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Abstract—In molecular communication, information is en-
coded and transmitted as a pattern of molecules or other very
small information carriers (in this paper, vesicles are used).
Nanoscale techniques, such as molecular motors or Brownian
motion, are used to convey the vesicles from the transmitter
to the receiver, where the transmitted message is deciphered.
In this paper, the microchannel environment is considered,and
the achievable information rates are compared between the use
of Brownian motion and molecular motors, which are evaluated
through simulation. Communication is viewed as a mass transfer
problem, where messages are sent by transporting a number of
vesicles from transmitter to receiver. Results are provided which
suggest that active transport is best when the available number of
vesicles is small, and Brownian motion is best when the number
of vesicles is large.

I. I NTRODUCTION

Molecular communication [1] is a new and biologically-
inspired communication technique which uses nanoscale prop-
erties of materials. Using molecular communication, informa-
tion is conveyed by encoding messages into the timing or
identities of molecules, which are released by a transmitter
and propagate to a receiver.

There is an emerging body of literature examining molecular
communication from an engineering perspective. One aspect
of this literature explores the various nanotechnologicaland
biological techniques that can be exploited in order to create
a communication system, such as calcium gap junctions in
cells [2], [3] and molecular motors propagating along alongcy-
toskeletal filaments [4], [5]. (The reader is directed to [6]for a
thorough survey of molecular communication techniques.) An-
other aspect of the literature explores molecular communica-
tion as a communication system, i.e., from a communication-
theoretic and information-theoretic perspective. Notable works
in this direction include a general formulation of molecular
communication as a timing channel under Brownian motion
[7], [8], and an analysis of information transfer rates using
molecular motors [9], [10]. Of the existing literature, these
information-theoretic papers are most closely related, though
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as we explain later, we propose a novel way of viewing the
information transfer problem.

One important practical domain for molecular communica-
tion is in the microchannel environment, assuming the lab-
on-a-chip devices without using the microfluidic flow, where
chemical processes are carried out in very small engineered
spaces [11]. In these systems, information may need to be
transmitted from one or more reaction sites to a data fusion
center, where a decision is made (e.g., deciding on the
presence or absence of pathogens). Though most conventional
communication systems are electrical or electromagnetic in
nature, it is generally inconvenient to combine electricaland
chemical components on the same device; thus, molecular
communication is an obvious solution.

The fundamental components of the microchannel system
have nanoscale dimensions, and it is these components that
we study in this paper. We consider a microchannel molecular
communication system consisting of nanoscale information
carriers (i.e., molecules or vesicles). Further, this study is
motivated by the existence of two possible nanoscale mass
transport systems: Brownian motion or active transport (in
our scheme, “active transport” refers to the transportation
of information-bearing vesicles using gliding microtubules
driven by immobilized kinesin molecular motors [12]). It
is unclear which method is most efficient to use in order
to construct a molecular communication system, or whether
each method is most appropriate in different circumstances.
Thus, our main contribution is to comparatively evaluate the
achievable information rates using both molecular motors
and simple Brownian motion. To this end, we produce a
simulation environment of the nanoscale components in a
microchannel system, and generate information transmission
models based on these simulations; finally, the models are used
to analyze the system’s information-theoretic properties. To
our knowledge, our paper provides the first direct comparison
between Brownian motion and active transport in an informa-
tion transmission problem.

II. SIMULATION ENVIRONMENT AND MODELS

Our setup, shown in Figure 1, is similar to that given in [13].
We use a rectangular propagation environment (with rounded
corners), consisting of aloading zoneand anunloading zone.
Regardless of the propagation model, message-bearing vesicles
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Fig. 1. Depiction of the simulation environment. In this figure, dots represent
vesicles, and filaments represent microtubules; note that the microtuble at
bottom has loaded a vesicle, whereas the microtubule at top has no vesicle.
The loading zone is on the left, and the unloading zone is on the right.
Microtubules and vesicles are not to scale.

originate at the loading zone, and propagate until they arrive
at the unloading zone. In this figure, it is important to note
that the microtubules and vesicles are not to scale.

We perform a two-dimensional discrete-time simulation
of particle motion (whether the particle is a vesicle or a
microtubule). Given some initial position(x0, y0) at time
t = 0, for any integeri > 0, the motion of the particle is
given by the sequence of coordinates(xi, yi). Each coordinate
(xi, yi) represents the position of the particle at the end of time
t = i∆t, where

xi = xi−1 + ∆r cos θi, (1)

yi = yi−1 + ∆r sin θi. (2)

The values of∆r and θi are dependent on the propagation
model in use. We consider two models in this paper:Brownian
motion, where the particle is a vesicle; andactive transport,
where the particle is a microtubule. Two-dimensional sim-
ulations are appropriate for microtubule propagation along
molecular motors (since the motors do not allow vertical
propagation), and we also use them for Brownian motion for
the sake of simplicity.

Mathematically, it is well known that Brownian motion
can be described by stochastic differential equations, and
properties of the motion (such as first arrival time distributions)
can be derived from solutions of these equations. However,
in confined spaces, such as microchannels, solutions are gen-
erally not available in closed form. Furthermore, analytical
solutions are generally unknown for active transport. Thus,
following [14], we performingMonte Carlo simulations on
particles in order to obtain the needed properties of the motion.

A. Brownian motion

Brownian motion refers to the random motion of a particle
as it collides with other molecules in its vicinity. Over each
time interval of∆t, the molecule’s displacement∆r is given
by

∆r =
√

4D∆t, (3)

whereD is the free diffusion coefficient. For a given molecule
and fluid propagation environment,D is given by

D =
kBT

6πηRH

, (4)

where kB = 1.38 · 10−23 J/K is the Boltzman constant,T
is the temperature (in K),η is the dynamic viscosity of the
fluid, and RH is the hydraulic radius of the molecule. We
assume thatD is the same throughout the medium, and that
collisions with the boundaries are elastic. In [14], valuesof
D ranging from 1-10µm2/s were considered realistic for
signalling molecules. Further,θi is an independent, identically
distributed (iid) random variable for alli, uniformly distributed
on [0, 2π).

B. Molecular motors

As in [13], we assume that the microchannel is lined
with static kinesin motors, and that these motors cause mi-
crotubules to propagate along their surface. The motion of
the microtubule is largely regular, although the effects of
Brownian motion cause random fluctuations. We useMonte
Carlo simulation to obtain the needed properties of the motion,
using a scheme from [15]. In this case, the step size∆r at
each step is an iid Gaussian random variable with mean and
variance

E[∆r] = vavg∆t, (5)

Var[∆r] = 2D∆t, (6)

wherevavg is the average velocity of the microtubule, andD

is the microtubule’s diffusion coefficient. The angleθi is no
longer independent from step to step: instead, for some step-
to-step angular change∆θ, we have that

θi = ∆θ + θi−1. (7)

Now, for each step,∆θ is an iid Gaussian-distributed random
variable with mean and variance

E[∆θ] = 0, (8)

Var[∆θ] =
vavg∆t

Lp

, (9)

whereLp is the persistence length of the microtubule’s trajec-
tory. In [15], these values were given asvavg = 0.85 µm/s,
D = 2.0 · 10−3 µm2/s, andLp = 111 µm. Following [15],
in case of a collision with a boundary, we assume that the
microtubuledoes not reflect off the boundary, as in an elastic
collision, but instead setsθi so as tofollow the boundary.

C. Initialization and Loading

The two propagation methods are initialized in different
ways. In both cases, the information-bearing vesicles start out
in a “loading zone”, and their initial locations are selected
at random and uniformly distributed within that region. In
Brownian motion, at the start of the simulation, all vesicles
are assumed to begin propagating simultaneously. Using active
transport, the vesicles are assumed to be anchored to the
loading zone until loaded on a microtubule, before propagating
to the unloading zone. The initial position of the microtubules
is selected at random and uniformly distributed within the
entire region of propagation. The initial angleθ0 is selected
uniformly at random from the range[0, 2π], and microtubules
are assumed to be initially unloaded unless their initial position
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Fig. 2. Example simulated trajectories of Brownian motion (top) and active
transport (bottom). Boundaries of the propagation environment are designated
by dotted lines, and the loading and unloading zones are designated by dotted
strips (loading on the left, unloading on the right). In the active transport
trajectory, the red path indicates the unloaded motion of the microtubule.

is within the loading zone. When the microtubule arrives at a
loading zone, for simplicity we assume that it loads exactlyone
vesicle. Experiments show that it is possible for microtubules
to load multiple vesicles at once [13], and we will consider
this scenario in future work.

Example simulated trajectories for both Brownian motion
and active transport are given in Figure 2.

III. I NFORMATION TRANSMISSION

Previous work has considered molecular communication
either as atiming channelproblem (i.e., where information
is encoded in the times when molecules are released), or
as a inscribed matterproblem (i.e., where information is
encoded by transmitting custom-made molecules, such as
specific strands of DNA). A novel approach is taken in this
paper: we consider information transmission as amass transfer
problem – in other words, a message is transmitted by moving
a number of vesicles from the loading zone to the unloading
zone.

In the simplest possible conception of this scheme, the vesi-
cles themselves are not information-bearing, and a messageis
conveyed in thenumberof vesicles arranged on the loading
zone. For example, if a maximum of three vesicles may be
used, we may form messages two bits (i.e.,log2 4): “00” for 0
vesicles, “01” for 1 vesicle, “10” for 2 vesicles, and “11” for
3 vesicles. However, this message is not perfectly conveyed
to the receiver: given a time limitT for the communication

session, it is possible that some of the vesicles will not arrive
at the unloading zone afterT has elapsed.

Let x represent the random number of vesicles present at the
loading zone, and lety represent the number that arrive at the
unloading zone onceT seconds have elapsed. Clearly, there
exists some probability mass functionf(y|x) of the number
of arrived vesicles given the number of transmitted vesicles.
We are interested in the Shannon mutual informationI(X ; Y ),
given by

I(X ; Y ) = E

[

log2

f(y|x)
∑

x f(y|x)f(x)

]

, (10)

where, in this example,f(y|x) represents the probability of
observingy vesicles at the unloading zone, given thatx were
released;f(x) represents the probability of releasingx vesicles
at the loading zone; andE[·] represents expectation. The value
of I(X ; Y ) represents the maximum rate at which data can be
reliably sent over the link, measured in bits per timeT .

The function f(y|x) is obtained from our simulator.
Whether Brownian motion or active transport is used, we
assume that each vesicle’s motion is independent from any
other vesicle. In Brownian motion, it is sufficient to determine
the probability that a given vesicle will arrive at the unloading
zone within timeT . Letting pa represent this probability, the
function f(y|x) has the binomial distribution, given by

f(y|x) =

{ (
x
y

)
py

a(1 − pa)x−y, 0 ≤ y ≤ x

0, otherwise
(11)

Thus,pa is found by simulating many trials of vesicle motion
over T seconds, and counting the fraction that arrive.

For active transport, we obtainf(y|x) directly by simulating
many trials of a single microtubule overT seconds, and
determining how many vesicles are carried from the loading
zone to the unloading zone in each trial. Thus, for a single
microtubule, the functionf(y|x) is formed by taking the
histogram of the trials.

If multiple microtubules are used, the probability mass
function can be found from the histogram for a single micro-
tubule, as follows. Letyi represent the number of microtubules
transported by theith microtubule (fori = 1, 2, . . . , k); clearly,
y =

∑k

i=1 yi. Also letf(y|x; k) represent the probability mass
function fork microtubles; then eachyi is an independent and
identically distributed random variable, with probability mass
function f(y|x; 1), given by the histogram described above.
Finally, we have

f(y|x; k) = f(y|x; 1) ⊗ f(y|x; 1) ⊗ . . . ⊗ f(y|x; 1)
︸ ︷︷ ︸

k times

, (12)

where⊗ represents convolution, which follows from a well-
known theorem for the sum of independent random variables.

IV. RESULTS

In Figure 3, we depict a histogram obtained by simulating
the motion of a single microtubule over a timeT = 66.67 min
(i.e., 4000 s, or 66 min 40 s); this is used as the probability
density funcitonf(y|x; 1) discussed in the previous section.
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Fig. 3. Histogram of the number of vesicles transported by a single
microtubule in timeT = 66.67 min.

This figure is typical of the results obtained forf(y|x; 1), with
the number of arrivals concentrated very close to the mean. It
is interesting to note that these distributions have low variance.

In Figure 4, we compare the achievable information rate
using either Brownian motion or active transport as a function
of the available number of vesicles; we assume that the
transmitter’s strategy is to use a uniform distribution over
whatever number of vesicles is available, thus maximizing
the transmitter’s entropy. Even for a single microtubule, we
see a large advantage using motors when the number of
available vesicles (i.e.,xmax) is small. We conjecture that this
is because the variance of the number of arrivals is relatively
high in Brownian motion, whereas active transport has lower
variance (i.e., given the number of transmitted vesicles, one
can more reliably predict the number of vesicles received
using microtubules, rather than using Brownian motion). How-
ever, information transfer using motors reaches a maximum,
because the transfer of mass is limited by the number of
available microtubules. This is suggested by the result in
Figure 3, where there is zero probability of 15 or more vesicles
arriving. Meanwhile, as expected, no such maximum exists for
Brownian motion, since all the vesicles can propagate at the
same time. Thus, we havetwo modes of operation: for small
xmax, active transport has the advantage; while asxmax → ∞,
Brownian motion has the advantage: in the figure, Brownian
motion has higher mutual information whenxmax ≥ 24,
compared to the peak of active transport. This is true for any
setting of the system parameters (such asT or the number of
microtubules), sinceI(X ; Y ) for Brownian motion increases
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Fig. 4. Mutual information versusxmax, where T = 66.67 min. The
distributionf(x) is uniform over{0, 1, . . . , xmax}. For motors, a maximum
occurs because the number of vesicles that can be transported is limited.

with xmax, but is generally bounded in active transport.
In Figure 5, we present results illustrating the effect of ad-

ditional microtubules. As expected, the mutual information in-
creases significantly as the number of microtubules increases,
since it is possible to transport additional vesicles. However,
the increase in mutual information is only logarithmic in the
number of microtubules, so greater relative improvement is
expected for small numbers of microtubules. In Figure 6,
we compare multiple microtubules to Brownian motion, with
respect to the entropy of the source; thus, this is a measure of
the efficiency of information transfer. Sincef(x) is uniform
over {0, 1, . . . , xmax}, the value of the source entropy is
log2(1+xmax). We see that the peak efficiencies for multiple
microtubules are consistently close to 1, whereas those for
Brownian motion are much lower. Nonetheless, Brownian
motion continues to dominate for largexmax.

V. CONCLUSION

In this paper, we performed the first direct comparison of
information transfer between Brownian motion and molecular
motors. From our results, we may conclude that there are two
modes of operation: if vesicles are scarce, molecular motors
are superior, because of the lower variance in the propagation
time; but if vesicles are plentiful, then Brownian motion is
superior, because all of the vesicles are able to propagate at
once. Our work leaves many interesting open questions for
future research. For example, the effect of Brownian motion
with drift, the effects of information-bearing vesicles, and the
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Fig. 5. Mutual information versus number of microtubules. In each case, the
distribution f(x) is uniform over{0, 1, . . . , xmax}, andxmax is chosen to
maximize mutual information.
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effect of multiple vesicle loadings on a single microtubulemay
be considered.
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