
CPS 803 Final Project Report
Ian MacPherson

dept. of Computer Science
Ryerson University
Toronto, Canada

ian.macpherson@ryerson.ca

Abstract—This project report investigates auto-encoders and
their relevance in image clustering for unsupervised image classi-
fication. The most promising results come from the experiments
training a linear classifier, where it is trained on top of a
randomly initialized auto-encoder, a pre-trained auto-encoder,
and trained end-to-end (auto-encoder & classifier). The end-to-
end method achieves the highest accuracy with fully supervised
image classification as hypothesized. Insights of this investigation
are extrapolated from the comparison between the results of
the experiments, and conclude that auto-encoder methods are a
viable architecture to increase training accuracy for unsupervised
image classification. This project provides plenty more questions
worth investigating, and are briefly discussed at the end of this
report.

I. INTRODUCTION

The deep learning revolution was made possible and accel-
erated in large part due to the vast amounts of data that became
readily available through user generated content uploaded to
the internet. The performance of neural networks have been
closely tied to the quality and quantity of the datasets available
and utilized during training time. However, it is not always the
case that datasets for specific tasks are readily available, or that
pre-trained networks will generalize well to niche tasks.

There is a growing area of research that aims to solve this
problem. The current methods are to train neural networks
to achieve a higher classification accuracy with a smaller
training datasets. This area of research is known as Few Shot
Learning, and has been investigated further over the course of
this project.

Auto-encoders are a type of neural network which take as
input image pixels, scale the image down to its features, and
reconstruct the image by transposing the operations to encode
the image. The encoded feature maps provide useful data for
the image, representing features such as lines of the image,
colours, and other patterns. The feature map information may
lead to important insights about which images belong to the
same image class. The concept of taking image features to
identify class may be accurate enough to show few images to
a neural network and still attain a high classification accuracy.

One can relate this to how humans learn to identify a
certain objects when only shown one-example of the class.
For instance, in the common memory game where players
identify pairs of the same class, players could flip over two
different images of cats and easily classify both images as
belonging to class ”cat”. Swap this with patterns, and players
of average cognitive ability can identify a pattern when only

being exposed to it once. If this same sort of learning can be
developed in a neural network, then image classification will
be able to achieve human accuracy when exposed on small
batches of training data.

II. PROBLEM STATEMENT AND DATASET

The main question this project asks is if there are methods or
architectures that could achieve a high accuracy with minimal
training. The intention behind this is to discover whether the
image classes are separable based on their features alone. If
the image features are separable, images from the same class
would cluster together and therefore be classifiable through
unsupervised learning. The dataset used is the CIFAR-10 [1]
dataset, which consists of 60,000 32x32 colour images across
10 image classes. Multiple experiments are run to compare and
contrast classification performance on the same architecture
trained by different methods.

An auto-encoder is used to try and achieve this separa-
bility, as auto-encoders are used to compress images to a
feature-representation, and reconstruct the images from the
feature representation by reversing the encoding steps. The
feature representations or ”feature maps” can then be used to
determine how image classes cluster together. This hypoth-
esizes that feature representations of the same class will be
mathematically closer together than feature representations of
another class.

The feature representations are used rather than simply
comparing images on a per pixel basis. Comparing images
pixel-by-pixel is not as robust to variances in the images such
as scale, rotation, or mirroring. By using the learned features of
the image, classification accuracy is expected to be increased
as features in class horse will be the same whether the horse
is on the left side of the image vs. the right side. When
comparing feature maps of the two aforementioned images,
they should be relatively similar however this will not reliably
be the case with pixel by pixel comparison.



III. METHODS & MODELS

A. Auto-encoder

Fig. 1. An example architecture of an auto-encoder network taken from the
article Applied Deep Learning - Part 3: Autoencoders. Note how the input
image is converted into a ’code’ representation and passed to the decoder
network. This encoding will be important throughout the rest of the report
as this feature representation is what is used to perform principal component
analysis, and train various models of a classification network, [2]

An auto-encoder is first trained on the CIFAR-10 dataset
for 100 epochs with binary cross entropy (BCE), L1, and
MSE losses for comparison. The code [3] for the auto-encoder
was found online, and was chosen due to its simplicity. The
auto-encoder consists of 3 convolutional layers for the encoder
network, and 3 transposed convolutional layers for the decoder
network. All intermediate activation functions are Relu, and
the final activation from the decoder is a sigmoid function.

When running experiments with the these loss functions,
there did not seem to be a large enough perceptual difference
to make the assertion that one loss function is more optimal for
the auto-encoder task than the others. The BCE loss was only
feasible for this application as the input images are scaled
within the range [0,1] on input due to torch.toTensor(), and
on output as per the sigmoid activation. The following exper-
iments and tests that include a pre-trained auto-encoder were
run with weights trained on the BCE loss unless otherwise
stated.

Fig. 2. Diagram of results of the Auto-encoder trained on different loss
functions for 100 epochs each. This diagram is meant to be zoomed in
on with an e-reader or in browser. This diagram illustrates that there is a
slight or negligible difference between networks trained on the respective
loss functions.

B. Principal Component Analysis

Once the auto-encoder was producing perceptually accept-
able results, the next step is to find if the features are
separable. A technique that was found was to perform principal
component analysis (PCA) on the feature maps for each image.
The intended outcome of this experiment is to visualize and
represent the data in a way that could be separable through
clusters of image features projected in two-dimensions. Ex-
pected results are nicely defined regions between each class,
or 10 data clusters on the plot as per the amount of CIFAR-10
classes. For this, the feature-maps of the encoder network were
vectorized and run through the sklearn.decomposition.PCA()
function.

It seems that the features when trained on an auto-encoding
task are not as separable as PCA or t-SNE [4] diagrams for
feature maps trained for supervised classification tasks. T-SNE
was tested on the same feature maps and did not provide
consistent results due to the hyper-parameter tuning required.
For simplicity and consistency of results, PCA was chosen
for projecting the high dimensional feature vectors to two-
dimensional space. The plot below shows the PCA of feature
maps of 10 000 CIFAR-10 Images, each point colour coded
according to its class.

Fig. 3. Feature space reduction to two dimensional plot points for 10 000
CIFAR-10 images. The plot points were generated using the feature maps
from the encoder network of a simple 3-layer neural network.

While Fig. 2 does not provide any clearly separable features,
it is still beneficial to note how the points are clustering. Plane
and truck seem to dominate the left-half of the cluster, and
more animal classes cluster toward the right-half. It makes
sense a priori that plane and truck would be somewhat similar,
as they are both machines made of metal and would share
similar features in this respect. The car class seems to be
evenly distributed across the cluster, which may suggest that
there are many images of cars taken in a nature setting. This
anecdote may be why the car is clustered between images
of animals as well as machines such as planes and trucks.



Fig. 4. Diagram from T-SNE visualization of 60 000 MNIST hand-written
digits [4]. Note: this visualization is simply to demonstrate separability across
a 10-class dataset from a neural network trained for classification. PCA and
the CIFAR-10 dataset are used in this project, not t-SNE and MNIST.

Unfortunately, this is nowhere near as separable as intended,
when a diagram much like the MNIST and t-SNE example
was expected from PCA.

A hypothesis for this outcome is that when a model is
trained for classification tasks, the model parameters must
be much more specific for classification, and produce more
separable features. The classification feature-maps generated
before classification would provide the nicely separable clus-
ters when projecting the to two-dimensions definable for each
image class.

Since this network was trained as an encoder portion of
an auto-encoder network, this may show that features for
auto-encoders do not need to be as pronounced for subjec-
tive perceptually pleasing results. Projection of features from
classification tasks may be more separable as the training will
modify the weights to be more generalizable across a class.
The auto-encoder seems to not be as separable due to the lack
of emphasis on the class of image, but rather the pixel-wise
difference in input and output images with respect to the BCE
loss.

An example of expected separability is shown in Fig. 3.

C. Classifier

Since principle component analysis does not seem to be
the best way to separate the feature maps, it was instead
decided to train a classifier directly on the feature maps of
the encoder portion of the auto-encoder network. A one-
layer linear classifier was used to test what effect the auto-
encoder network may have on classification accuracy. The
first experiment is to train a linear classifier on a randomly
initialized auto-encoder, and freeze the auto-encoder weights
during training. This first experiment may act as a sort of
baseline in comparison to the experiments that follow it. The

experiments that follow train a classifier on a pre-trained auto-
encoder, and a classifier and auto-encoder end to end. Each
of the experiments are run with the cross entropy (CE) loss
to train the classifier using the Adam optimizer. For the pre-
trained auto-encoder, the BCE weights are used, and each
classifier is trained over 100 epochs.

The one-layer linear classifier was chosen due to its simplic-
ity, and is assumed to have a smaller impact on classification
accuracy. Since the main goal of these experiments is to see if
the data is separable, it follows that a weaker classifier would
provide a good indication of separability. In contrast to PCA,
the hypothesis is that the separability is not easily represented
in two-dimensions. It may be that even when the data seems
noisy from PCA, that a simple classifier is able to find patterns
in the data.

1) Classifier trained on a randomly initialized auto-
encoder: The intention behind this experiment is to provide
a baseline to see what level of accuracy the linear classifier
can achieve on random feature maps. The weights of the
auto-encoder were randomly initialized and frozen throughout
training to achieve such results. This baseline is important, as
it provides a greater understanding of the power of the linear
classifier vs. the feature representations, and how large of a
role the auto-encoder plays in classification accuracy in the
subsequent experiments.

A random classification on CIFAR-10 would result in an
overall accuracy of 10% across all classes. Examples of this
sort of case would include if the classifier always predicts the
same class, or predicts all classes evenly. If the linear classifier
can achieve a classification average greater than random, the
logic follows that the linear classifier is able to find some sort
of separability from even the random outputs of the encoder.
If not, the question arises as to whether the auto-encoder can
represent features in a separable way without training, or if
a one-layer classifier is powerful enough to find separations
in the seemingly random data. The answer may also exist
somewhere between the two previous assertions, with the
auto-encoder and classifier being symbiotic to one-another.
If this is the case, the encoder and classifier each contribute
significantly to the classification accuracy.

The results of this experiment are outlined in the second
column of table 1.

2) Classifier trained on pre-trained auto-encoder: For this
experiment, the pre-trained weights from the BCE loss func-
tion are loaded into the auto-encoder network. As in the
experiment above, the auto-encoder weights are frozen during
training as to only optimize the weights of the classifier. With
a trained auto-encoder, it is expected that the results will be
better than the classification on the randomly initialized auto-
encoder weights.

This experiment in comparison to the previous gives a
particular insight into what increase in accuracy a trained
auto-encoder gives to classification. Or more specifically, what
accuracy an auto-encoder trained for an auto-encoder task can
provide to image classification. It is key to remember that
the auto-encoder gives no importance to the image class, but



simply reproduces the pixels from the feature maps of an
image. If the features are much more separable than random,
the auto-encoder can provide a useful tool in unsupervised
learning tasks for image classification. If the experiments
show that images can be separated into classes based on
their features alone, more robust models can be developed
to perform a range of classification tasks.

Robustness meaning in this instance that a network could
be trained on one dataset, fed completely different data than
what it was trained on, and have the classifier determine which
images belong into which class. Or at the very least, predict
if the images belong to the same or different classes. An
example could be training a network on a dataset of animals,
and later testing its accuracy when classifying cars, or at the
very least if cars are different from one-another. Unfortunately
this is beyond the scope of this current assignment, but is an
interesting topic to investigate and experiment with further.

The results of this experiment are outlined in the third
column of table 1.

3) Classifier and auto-encoder trained end-to-end: The
end-to-end method trains both the auto-encoder and the linear
classifier. This experiment will likely produce the highest
classification results of the three, as it is a fully-supervised
method of training a classifier. Due to the low depth of both
the auto-encoder and classifier networks, the network is not
expected to beat or even meet industry standards. However, it
seems reasonable to make the hypothesis that this network will
have the highest overall accuracy out of all of the experiments.

It must be noted that for this example, only the cross entropy
loss is used. The loss is calculated based on the predicted
vs. expected labels and back-propagated through both the
linear classifier and auto-encoder weights. It was decided to
use this loss, as all of the other experiments used solely the
cross entropy loss when training the classifier. Other methods
could include adding the cross entropy from classification, and
BCE from the auto-encoder losses together. Back-propagating
separately for each loss may also be a viable option, and leaves
a door open for more experiments beyond this project. For
the sake of consistency, these options are avoided to limit the
number of variables between each experiment.

The results of this experiment are outlined in the fourth
column of table 1.

IV. RESULTS

As hypothesized, the initial experiment produced the worst
results, the second produced better results, and the final
produced the best results in respect to classification accuracy.
Interestingly, the difference in accuracy of classification on
random encoder weights vs. pre-trained encoder weights was
not as large as expected.

Table 1 outlines the results from each experiment, with the
last row displaying the average precision across each class for
the respective method. Each of the following accuracies are the
results of each model tested over a test batch of 500 images.

It is particularly interesting to note that the random and pre-
trained accuracies have consistent 0% scores for some of the

TABLE I
CLASSIFICATION ACCURACY PER CLASS ACROSS EXPERIMENTS.

Classes Random % Pre-trained % End-to-end %
Plane 50 50 75
Car 22 66 88
Bird 0 0 44
Cat 0 25 50

Deer 25 41 50
Dog 33 16 50
Frog 36 72 81
Horse 16 0 83
Ship 73 26 53

Truck 0 0 75
AVG 25.50% 29.60% 64.90%

same classes across experiments. This may be due to certain
classes overlapping more heavily with other classes, and the
other classes being exclusively predicted.

A case could be made for this in the situation where the
randomly initialized auto-encoder produces 0% accuracy for
the bird and cat classes. It may be the case that the fur of the
cat and feathers of the bird are being grouped with the features
for the dog, deer, frog, and horse classes which have attained
higher accuracies with this model. This seems reasonable as
for the pre-trained auto-encoder experiment, some of the 0%
classes in comparison to the randomly trained experiment have
a small increase in accuracy. The increase in accuracy may
likely be due to the more concise feature representations from
the trained auto-encoder.

Fig. 5. Loss curve generated from the linear classifier on the randomly
initialized encoder feature maps.

When considering the loss curves from each experiment,
the main distinction to note is the smoothness of the end-to-
end loss. The loss curves from the linear classifier trained on
the random auto-encoder weights seems to be almost linear,
while the loss curve trained on the pre-trained auto-encoder
weights seem to be more volatile from the fifth epoch onward.
Again, this opens the opportunity to research how training the



Fig. 6. Loss curve generated from the linear classifier on the pre-trained
auto-encoder feature maps.

Fig. 7. Loss curve generated from the linear classifier on the randomly
initialized encoder feature maps.

auto-encoder on different loss functions may serve to optimize
classification. Smoothness in the end-to-end loss curve is seen
as more of an ideal, as the smoothness suggests consistent
steps toward a global or local minima.

Another interesting result is the comparison of the decoded
images in both the randomly initialized auto-encoder and auto-
encoder trained end-to-end with the classifier. The pre-trained
auto-encoder diagram has been left out as the results are indis-
tinguishable from those in Fig. 1. The results of the randomly
initialized auto-encoder are not surprising, as it is makes sense
that the encoder network can not learn any meaningful features
from random weights. Since the weights are initialized and
frozen upon training, it is clear that the images in Fig. 7 are
produced at a high loss if the loss were to be calculated. What
is most surprising with the randomly initialized auto-encoder
is the fact that the one-layer classification network is able to

Fig. 8. Decoded images from the randomly initialized auto-encoder. This
result is unsurprising as the images are being reconstructed at a high BCE
loss.

Fig. 9. Decoded images from the auto-encoder trained end-to-end. Although
subtle, can begin to see some parts of the image that are being decoded.
Diagonal lines, blobs, regions of the image where the object may exist, etc.

achieve a 25.50% average precision across all classes which
is greater than theoretical random results of 10% accuracy.

The end-to-end decoded images are interesting, as it seems
to be decoding some sort of image features. In some images
it seems like the blob of the object is being decoded, or
the specific region where the object exists. This is partic-
ularly interesting as the decoder network did not have its
weights updated during the training time of the end-to-end
auto-encoder/classifier model. This could provide evidence in
support of the encoder being more responsible in attaining the
higher accuracy in the end-to-end model. A future experiment
to run would be to back-propagate through the decoder net-
work as well and see if the results of both the decoder and
classifier will be greater, or hindered by the other.

V. DISCUSSIONS

Throughout this project, techniques for representing image
data for higher classification accuracy have been explored.
This was done with the intention of finding methods for
separating image features into data clusters to eventually
run unsupervised learning or clustering algorithms on. Future
work from this point onward would include training a neural
network on smaller batches of data, and classifying images
based on which cluster the unseen images are closest to.
With the insight that the pre-trained auto-encoder increases
classification accuracy, this leads to the conclusion that the pre-
trained auto-encoder learns features that can be separable by
the linear classifier in comparison to the random initialization
of auto-encoder weights.

Another interesting experiment would be to train both the
complete auto-encoder and the linear classifier at once, using
the BCE and CE loss function to train the network at once. It



would be interesting to see if the encoder (as it is the common
factor between the decoder and classifier) can be optimized
to support both tasks with any sort of accuracy. Using two
losses to train a network involved in two tasks does not seem
like it would be the most sensible thing to do or produce
the best results. However, if the results of this happened to be
somewhat positive, there could be more research opportunities
in this area for generalizing a network over multiple tasks.

Some additional modifications to the network which seem
promising are using Local Aggregation Loss (LA) [5] for train-
ing the auto-encoder. From some high-level research it seems
that this loss function optimizes the auto-encoder network for
greater separability of image features for image clustering. An
informative article written on this topic was found by Anders
Ohrn [6] and describes this topic in a concise manner.

Using industry standard networks and running the same tests
is also a viable next step. If there is a correlation between this
simple network and industry standard architectures, it could
lead to insights for whether this problem is unique to the
given architecture. If this is the case, perhaps new architectures
paired with the LA loss above can be developed to eventually
train a neural network on one (or significantly few) image(s)
of each class and still achieve a high classification accuracy.

In summary, this project began as an investigation into few
shot learning and auto-encoders. From this, PCA and a linear
classifier were used to find separability or patterns within
the encoded image data. Three experiments were run with
the auto-encoder and classifier networks to provide greater
insight on the role of the auto-encoder vs. the classifier. While
the classifier trained on the pre-trained auto-encoder did not
provide as large of an accuracy increase from the random
initialization, the results provide many paths forward for future
areas of investigation.

VI. IMPLEMENTATION AND CODE

Fig. 10. PyTorch implementation of one-layer linear classification network.
Code snippet shown here to celebrate the simplicity and ease-of-use of
PyTorch. This is trained from the feature maps of three differently initialized
and trained auto-encoders

The PyTorch package is used throughout the project which
consists of the torch and torchvision packages upon installation
and use within python. Other packages such as sklearn were
used for PCA, and matplotlib for plotting the diagrams. The
auto-encoder was taken directly from Github [3], and the
linear classifier was a simple one-layer network that takes the
48 dimensions of the auto-encoder feature representation and
outputs 10 class scores. This was convenient to implement
with PyTorch and consisted of a one-line definition shown in
Fig 9.

Various research papers and blogs were consulted for dia-
grams, ideas for techniques, and gaining general background
knowledge. The papers are cited accordingly in the following

references section, and cited where relevant throughout the
project report.

REFERENCES

[1] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
tech. rep., 2009.

[2] A. Dertat, “Applied Deep Learning - Part 3: Autoencoders.”
[3] C. Ni, “PyTorch CIFAR-10 Autoencoder.”
[4] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal

of Machine Learning Research, vol. 9, pp. 2579–2605, 2008.
[5] C. Zhuang, A. L. Zhai, and D. Yamins, “Local aggregation for unsuper-

vised learning of visual embeddings,” 2019.
[6] A. Ohrn, “Image Clustering Implementation with PyTorch.”
[7] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” 2015.


