

Group 18: A Reinforcement Learning and Machine

Learning Approach to Connect Four

Tudor Tibu

Department of Computer Science

Ryerson University

Toronto, Canada

tudor.tibu@ryerson.ca

Alexander Yaroslavtsev

Department of Computer Science

Ryerson Univerity

Toronto Canada

ayarosla@ryerson.ca

I. INTRODUCTION

For our course project, we have decided to focus on the

game of Connect Four. Connect Four is a two player strategy

board game where each player tries to get four of their colored

pieces (also called discs) in a row while trying to prevent the

opponent, who would be using a set of differently colored

pieces, from doing such themselves. It is played on a 6 tall by 7

across vertical slot board, with each piece inserted into one of

the 7 columns and falling down to the lowest available slot

within the column. The two players take turns making moves

until someone gets four of their pieces in a row and wins, or the

game ends in a draw.
The game of Connect Four has been researched quite

extensively. The game was first solved back in the year of 1988
by two independent researchers James D. Allen and Victor Allis.
Allen provided extensive analysis in his publication “Expert
Play in Connect-Four”, deconstructing the game into discrete
scenarios and how to go about them [1] while Allis presented a
knowledge-based solution to the game [2]. Since then, there
have been many different approaches to solving the game,
including the application of algorithms such as Q-Learning,
MiniMax, Alpha-Beta pruning, Monte Carlo Tree Search, and
many others

II. PROBLEM STATEMENT

Our original goal was to explore many of these different
methods to evaluate their performance and metrics in relation to
one another, but this was simplified down to the exploration of
a few select methods & evaluation of their own respective
strengths and weaknesses (due to the withdrawal of two
members from the project). The first explored method consisted
of a deep Q-Learning approach, experimenting primarily with
different configurations of deep neural networks (DNNs). The
second method explored was creating a classifier that could
identify if a board state was winning or losing for the player
going first. We wanted to explore this approach because of the
nature that Connect Four is played, once a piece is played that
piece cannot be removed or changed (i.e., pieces are static)
unlike a game like chess or go. A game of Connect 4 can be
visualized as an adirectional, acyclical tree. Assuming at least
one player is playing optimally, once a player makes a move that
is winning they will always be winning and vice versa for player
making a losing move. Therefore, if we can create a model that
can classify winning board positions, and create an agent that
searches when playing the game, we can theoretically, create a
Connect Four agent that can explore game options with prior
knowledge of the game, and therefore speed up learning by
reducing the number of episodes needed.

III. DATASETS

2 different datasets were obtained online, one from UCI.edu
[3] and another one obtained from Kaggle.com [4]

A. UCI Dataset (Dataset 1)

This dataset contains every board position in Connect Four

eight moves into the game and the result of the game assuming

both players are playing optimally. Another condition for the

dataset is that neither player has already won the game and the

next move is not forced (e.g., neither player 1 or 2 has 3 in a

row). This dataset was created and mathematically proven by

John Tromp, a Dutch computer scientist [5]. Classes in the

dataset are labeled as either {win, loss, draw} and the feature

vector contains 42 features, each one representing a position on

the board. The feature vector is organized column-wise (x0 is

the first row, first column, x1 is the second row first column on

the board). The feature vector is labeled as {x, o, b} x

representing player 1’s pieces, o player 2’s and b representing

unoccupied positions. The data set contains 67,558 entries, of

these entries 44,474 (65.8%) are classed as win, 16,636 (24.6%)

are classed as loss and 6,450 (9.6%) are classed as draw.

Before any of this data was used for training or testing,

feature labels were changed from {x, o, b} to {1, -1, 0}, class

labels were changed from {win, loss, draw} to one hot encoding

and the dataset was separated into 3 different files one for each

class.

B. Kaggle Dataset (Dataset 2)

This dataset contains some possible board state after the

game as concluded. Classes in the data set are labeled either {1,

-1, 0} 1 for a win, -1 for a loss, 0 for a draw and the feature

vector contains 42 features, each one representing a position on

the board. It is organized row wise (x0 is the bottom row, first

column, x1 is bottom row, second column). The feature vector

is labeled as {1, -1, 0} 1 represents player 1’s position, -1

represents player 2’s position and 0 represent unoccupied

positions. The data set contains 376,620 entries, of these entries

181,256 (48.1%) are classed as 1, 180,868 (48.0%) are classed

as -1, 14,498 (3.9%) are classed as 0.

Before any of this data was used for training or testing,

feature labels were changed to column wise orientation, class

labels were changed to one hot encoding and the dataset was

separated into 3 different files, one for each class.

IV. LIBRARIES AND TOOLS

We primarily used TensorFlow and Keras for our model

implementations. The sequential model was used as the

mailto:tudor.tibu@ryerson.ca
mailto:ayarosla@ryerson.ca

baseline for the Q-Learning approach, as well as the model

based approaches.

For initial experimentation, the logistic regression

classifier provided in the course assignments was also used. As

well as sklearn’s implementation of the logistic regression,

SVM and GBM classifiers.

V. EXPLORED METHODS

A. Q-Learning

Q-Learning is a model-free reinforcement learning (RL)

algorithm. It is considered an off-policy technique as it can

learn an optimal policy largely from exploration (i.e. random

moves), independently from the policy being learned and the

agent’s actions. At its core, Q-Learning can be represented as a

state to action-value table, with one cell for every state and

action pair. As such, it is a value-based algorithm, as it attempts

to learn the net reward values for subsequent action states from

any given state, taking the action that maximizes the net reward.

Using the Bellman equation value function to propagate

rewards, Q-Learning can learn an optimal playing strategy with

no prior knowledge of the environment.

In the context of the Connect Four game, there are no more

than 7 possible actions at any given state (one for each column

slot), but the total number of states for a vanilla 6x7 game board

is gargantuan, exceeding 4 trillion legal states [2]. As it is

infeasible to store and manage such a large table, the

workaround approach is Deep Q-Learning (DQL), where a

deep neural network (DNN) is used to estimate the action

reward values for any given state.

Two main deep neural network (DNN) models were

explored for this problem. The first was a simple fully-

connected DNN with varying number of layers and neurons,

and the second was a convolutional neural network (CNN) to

leverage the spatial relationships of the environment. The initial

input for both models was 42 features (one for each slot in the

game board, depicting its value), and with a linear activation

output of 7 values (one for each column, i.e. the estimated

reward for that column action). The ReLU activation function

was used for all intermediate layers, Adam was chosen as the

optimizer, and mean squared error (MSE) was used as the loss

function. The rest of the setup of both model types varied for

each testing instance.

Reinforcement learning has a set of fixed variables called

hyperparameters. The first of which is epsilon, which signifies

exploration rate. For each agent & model, the epsilon value was

evaluated as:

𝜖𝑥 = max (0.995𝑥 , 0.05) (1)

Where x is the current episode number. This decay works

well to help the agent explore the game board early on, but

primarily focus on exploitation once it has good knowledge of

the environment. This epsilon function produces the following

curve.

Fig 1. Epsilon decay curve used for all DQL models

Gamma, which is the discount factor used in the Bellman

equation, was set between 0.9 to 0.95. The reasoning behind

such a high discount factor is its desired effect of reward

propagation throughout the board, making prospective rewards

in future states easier to notice ahead of time. Low gamma

values result in reward short-sightedness, which is not

preferable.

Another common technique for DQL models is experience

replay. The idea behind this technique is the storing of state

transitions and their generated rewards in a memory/feedback

buffer as training samples, and then selecting a random batch

from this buffer during each training iteration. In contrast to

sequential sampling, this approach breaks any high correlation

between samples, which tends to result in more efficient

learning [6]. This standard technique was used to train the

models, with varying sizes of the replay buffer.

To evaluate each model, a fixed set of metrics was used.

This included the average loss, win/draw/loss rate, error/invalid

move rate (counted each time the agent tried to choose an

inaccessible column), average move count, and average episode

reward. These metrics, averaged over finite episode intervals,

proved sufficient enough to deduce strengths and weaknesses

of each configuration, and adequately allowed for comparison

between the various tested models and setups.

B. Model Based Approach

Since the DQL approach requires a model to estimate action
reward values for any given state, we believe that creating a
model from existing data that can classify whether a board that
is winning or losing would reducing the amount of training
required for a DQL network to learn.

We decided to compare how effective both a multi-layer
perceptron (MLP) and a convolutional neural network (CNN) at
classifying unfinished games. We chose a CNN because of the
spatial nature of the Connect Four board and because the feature
vector of our data is small, we believed that a MLP could also
be very effective and efficient. To evaluate each of these models,
we decided that accuracy would be the best metric to compare
the model’s effectiveness, and since we would be working with
multiclass data creating confusion matrices of our data would let
us know which classes the models were having trouble
identifying.

Since we were working with 2 separate datasets we decided
to start with simple classifiers, since they are easier and faster to
train. By training and testing with out simple classifiers we can
see which combination of data is most effective for comparing
MLP and CNN structure. Ideally, we would want data that
creates the least confusion in our results.

1) Data Splitting and Simple Classifier Tests. For training

our simple classifiers we decided to evaluate the following

methods: 1) Training on incomplete games and testing on

incomplete games. 2) Training on incomplete games and testing

on complete games 3) Training on complete games and testing

on incomplete games. We chose logistic regression (logreg),

state vector machines (SVM) and gradient boosting machine

(GBM) for our simple classifiers. These were chosen because

these algorithms are fast and are easy to implement.

As for splitting our data for each method, all training data

had 10,000 samples and test data had 5,000 samples. Ratios

between classes were always equal regardless of the method we

were experimenting, for example, if we were training/testing a

model that included the class labels {draw, win, loss}, their

respective ratios would be {1/3, 1/3, 1/3} for both testing and

training sets. If we were training a model that only included the

class labels {win, loss} their respective ratios would be {1/2,

1/2}.

VI. RESULTS AND OBSERVATIONS

A. Q-Learning

The initial three tests consisted of a simple fully-connected

DNN with around 5 dense layers of 42 neurons each. These

tests were conducted to evaluate different learning rates, with

the agent playing against a random adversary – one that picks

actions at random. The lowest attempted learning rate, 1e-5,

gave good results and allowed the agent to learn an optimal

strategy fairly quickly. The next learning rate, 1e-4, gave

similar results, but the various metrics were less stable and

slightly more variant than those from 1e-5, but the agent learned

an optimal strategy a bit faster. The last test used the largest

learning rate of 1e-3, and the agent managed to learn an optimal

strategy the quickest, but with the most instability (as each

reward affected the model considerably). This final test also

succumbed to the problem of not using a sufficiently large

enough replay buffer, causing the model to erroneously adapt

to a poorer strategy after 20k episodes and never recover (due

to a low epsilon value past 6k episodes). As a result of these

tests, 1e-4 was used as the baseline learning rate.

The next phase of testing shifted to a 2D convolutional

approach, using the same problem of random adversarial play

but with a CNN model. The model was constructed with a

single 2D convolutional layer, followed by a few dense layers.

For the first model, 2x2 max pooling was also added, but was

not found to be helpful. This first model performed

considerably better than its DNN counterparts, reaching a stable

90% win-rate average after around 40,000 episodes. The even-

shaped 4x4 filter size did not seem to negatively affect the

learning ability very much, despite the common practice to

avoid odd-sized filters due to distortions [7]. However, to

address this notion, another CNN model was tested with a 5x5

filter instead, and this showed an improvement to the previous

model, with a 95% win-rate at 40k episodes. For this latter

model, the invalid rate was also considerably lower (Figure 2).

Fig 2. Performance comparison between simple dense DNN model and a

CNN model, both using a learning rate of 1e-5, averaged by groupings of 500

episodes.

 With the established data from the previous tests, the last

phase of testing attempted to teach an agent how to play against

a smarter adversary. This adversary would place a winning

move whenever possible, and avoid/block any available

winning moves for the agent. This forced the agent to play more

defensively, and search for states with several winning move

options. The most effective model was a CNN using a single

5x5 filter 2D convolutional layer with 256 outputs, 1e-4

learning rate, 10% spatial dropout, and 3 additional dense

layers. Using this model, after 50k episodes the agent was able

to cleverly win around 35% of the time, with a relatively low

invalid rate of 15% (see Figure 3). The other two training

models, one being another CNN with a lower learning rate, and

the other a regular DNN, the results were not as impressive,

with less than 25% win-rate at 50k episodes.

Fig 3. Reward comparison between three similar models, averaged by

groupings of 100 episodes. The model with the smaller learning rate gave the

best results among these training runs.

CNN models were found to be an effective method for this

deep Q-Learning approach. However, this approach would

likely require a very high number of training episodes in order

to “master” the game board through DQL, thus is likely not the

best for solving the game in an efficient manner. For simple

tasks however, like playing against a random adversary, this

approach is fairly effective, as the complexity of blocking

opponent wins and relying on multiple win strategies is

practically eliminated.

To continue this approach going forward, the training can

be run for a 50k+ more episodes. If no substantial progress is

made, increasing the learning rate further may be beneficial, as

long as the replay buffer is made sufficiently large such that

significant rewards are not excessively sampled (as this could

give the model an erroneous bias). A better reward function

should also theoretically help this approach for harder

adversary play, as our implementation was limited to end-game

rewards, making it more difficult for the agent to learn on such

relatively rare stimulations, given that the smarter adversary

makes it very difficult for wins to be discovered. Using a

complementary model that can estimate win chance for reward

distribution may be a promising addition. For efficiency, this

approach would also need to be migrated to run on the GPU, as

the standard implementation of Q-Learning is largely

sequential.

B. Simple Classifiers

1) Training Simple Classifiers with Incomplete Games and

Testing on Incomplete Games. First training tests that we did

was training non neural network classifiers. We chose this

approach to see how the classifiers behaved working with this

dataset and to see if we needed more data. From this test max

accuracy was below 70% (Figure 5) which we found

unacceptable. Creating a confusion matrix (Figure 4) of the

results showed that the simple classifiers had a difficult time

classifying draws correctly, with the highest accuracy being

69% and the lowest being 33%.

Fig 4. SVM, LogReg and GBM confusion matrix for trained and Tested on

Dataset 1

Fig 5. Simple Classifier Accuracy, Trained and Tested on Dataset 1, with

Draws

Since training our data with draws created a lot of

confusion, we wanted to see how the algorithms performed on

classifying wins or losses. We expected that overall accuracy

would increase by 10-20% (the average of falsely predicting a

draw for a win or loss). While our prediction was semi true, and

that overall accuracy did increase (Figure 6), we noticed that

number of false positives for win and loss labels also increased,

for some cases it was insignificant margins (<5%) in other cases

it was as high as 10% (Figure 7). As a result draw cases were

excluded for future models.

Fig 6. Simple Classifier Accuracy, Trained and Test on Dataset 1, no draws

Fig 7. SVM, LogReg and GBM confusion matrix for Trained and Tested on

Dataset 1, no draws

2) Training Simple Classifiers with Complete Games

including Testing on Complete Games. Since Dataset 1 only

contained 8-ply moves, we believe that our algorithms would

have a difficult time determining if a board state is winning or

losing if it contained a configuration that has more that eight

pieces on the board. Since Dataset 2 contained positions that

were more than 8-ply we created this test to see how it would

perform. We noticed our algorithms performed extremely

poorly in this scenario, performing below 50% accuracy

(Figure 8).

Fig 8. Simple Classifiers Accuracy Trained on Incompleted games, Tested

on Complete Games

Given the results of our last test we believed that

training the models on complete games would improve the

overall accuracy since the data is more diverse data points to

learn from. Training and testing on complete game resulted in

very high accuracies, higher than previous examples (Figure 9).

Therefore, when calculating which neural network setups

would be best to train Connect Four boards on, we will be

training our examples on completed games and tested them on

complete games.

Fig 9. Simple Classifier Accuracy, Trained and Test on Dataset 2

C. Creating Neural Networks

For out network structures, we decided the best approach

was to use cross entropy loss and an Adam optimizer. We

compared different network structures by training them with

completed games and testing them on completed games.

1) CNN Structure. 9 different CNN setups were considered

(Figure 10), ranging from the amount and size of fully

connected layers amount and size of convolution filters, and we

found that the best performing setup was the following. The

first layer is a reshape layer, it reshapes the 1x42 input into a

6x7 for the convolution. Second layer is a 2D convolution with

256 filters and a filter size of 5x5. Third layer was a flatten

layer. The fourth and fifth layer were 2 fully connected layers

with over 200 outputs. Sixth layer was a fully connected layer

with ReLU activation and an output size of 42. Seventh layer

was a dropout layer with a rate of 0.1. The output layer was

fully connected layer with softmax activation and an output of

3 (1 for each class).

Notice that, networks 1-5 has a convolution filter of 3x3,

network 6 had a 4x4 filter and networks 6-9 had a convolution

filter of size 5x5. The most significant improvement was

increasing the filter size to 5x5, this is most likely since the 5x5

filter is large enough to filter board sequences that are winning,

(i.e. 4 in a row opportunities which the 3x3 filter is not larger

enough to filter). Max pooling (Network 5) and using multiple

convolution layers (Networks 4 & 5) had no effects.

Fig 10. Accuracy Comparison of 9 different CNN Structures

2) MLP Structure. 7 Different MLP setups were considered

(Figure 11), with ranging from wide networks with few layers

but more parameters (Networks 1-4) to more deep networks

with fewer parameters (Networks 5-7). We found the best

performing setup was a wide network structure, based on

average accuracy per epoch. It had 3 large dense layers (>200

outputs), 1 small dense layer (<50 outputs), 1 dropout layer with

a rate of 0.1 and the output layer with 3 outputs. All dense layers

used ReLU activation and the output layer used softmax

activation.

The accuracy spread between the setups with the highest

average accuracy vs. lowest average accuracy was much closer

than the spread for the different CNN setups.

Fig 11. Accuracy Comparison of 7 different MLP Structures

D. Comparing NN classifiers with Simple Classifiers

1) Training with Complete Games, Testing on Complete

Games The neural networks performed better than the simple

classifiers (Figure 12) for this test. We found that the neural

networks were better at determining if there was a draw in a

finished game than the simple classifiers

Fig 12. Comparing NNs vs Simple Classifiers, Training and Testing on

Completed Games Data

2) Training with Complete Games, Testing on Incomplete

Games. We found that the neural networks performed on par or

worse than the simple classifiers when we trained it in on

complete games data and testing it on incomplete game data

(Figure 13).

Fig 13. Comparing NNs vs Simple Classifiers, Training on Completed

Games Data and Testing on Incomplete Game Data

We speculate that the cause for this poor result is either due

to overfitting, not enough diversity in the training data (i.e.

since the training data used finished game states with mostly

filled boards, it improperly knows how to predict emptier board

states) or our complete game data set did not contain enough

examples of perfect play.

3) Training on Mixed Data, Testing on Incomplete Games.

For this test, we took approximately 2,000 samples of

incomplete game data and added it to our complete data set

(removing 2,000 samples that were originally there). We found

that our neural networks performed a lot better (Figure 14) than

on the previous example. This supports our previous hypothesis

that the number of blank board states and our data containing

non perfect play since our models were able to adjust and

perform even better than the simple classifiers.

Fig 14. Comparing NNs vs Simple Classifiers, Training on Completed

Games Data and Testing on Incomplete Game Data

E. Next Steps for the ML approach to this problem

We consider this part of the approach unsatisfactory, since

our goal was to create a classifier that can test to see if a board

state is winning or losing by only training it with finished

games. However, we see there were some minor successes,

training the data on the mixed data set gave valuable insight on

improving this approach to the problem. Should this project

continue, an ideal next step would be to identify the error that

caused poor results. Going off earlier speculations, possible

solutions include 1) Using deeper networks not wider ones, 2)

Diversifying our data used 3) Adjusting our model to better

identify key configuration and reduce the affect blank spaces

have on the prediction. Using a deeper network with fewer

parameters in some cases was shown to reduce the amount of

overfitting and improve generalizability [8]. By diversifying

the amount of data we are training on, our model can learn from

different examples. Finding a dataset that includes more than

just 8-ply moves of perfect play position, we would be able to

evaluate how our models compare in board positions with more

pieces.

REFERNECES

Code available at https://github.com/tudortibu/connect4
[1] James D. Allen, The Complete Book of Connect 4.

Puzzlewright, 1990.

[2] V. Allis, “A Knowledge-Based Approach of Connect-Four: The

Game Is Solved: White Wins,” ICG, vol. 11, no. 4, pp. 165–

165, Dec. 1988, doi: 10.3233/ICG-1988-11410.

[3] “UCI Machine Learning Repository: Connect-4 Data Set.”

http://archive.ics.uci.edu/ml/datasets/connect-4 (accessed Dec.

07, 2020).

[4] “Connect-4 Game Dataset.”

https://kaggle.com/tbrewer/connect-4 (accessed Dec. 15, 2020).

[5] “John’s Connect Four Playground.”

https://tromp.github.io/c4/c4.html (accessed Dec. 15, 2020).

[6] “Connect Four - Deep Reinforcement Learning,” Stefan Voigt,

Apr. 01, 2020. /post/connectx/ (accessed Dec. 15, 2020).

[7] S. Sahoo, “Deciding optimal filter size for CNNs,” Medium,

Nov. 29, 2018. https://towardsdatascience.com/deciding-

optimal-filter-size-for-cnns-d6f7b56f9363 (accessed Dec. 15,

2020).

[8] R. Eldan and O. Shamir, “The Power of Depth for Feedforward

Neural Networks,” arXiv:1512.03965 [cs, stat], May 2016,

Accessed: Dec. 14, 2020. [Online]. Available:

http://arxiv.org/abs/1512.03965.

