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I. INTRODUCTION  

For our course project, we have decided to focus on the 

game of Connect Four. Connect Four is a two player strategy 

board game where each player tries to get four of their  colored 

pieces (also called discs) in a row while trying to prevent the 

opponent, who would be using a set of differently colored 

pieces, from doing such themselves. It is played on a 6 tall by 7 

across vertical slot board, with each piece inserted into one of 

the 7 columns and falling down to the lowest available slot 

within the column. The two players take turns making moves 

until someone gets four of their pieces in a row and wins, or the 

game ends in a draw. 
The game of Connect Four has been researched quite 

extensively. The game was first solved back in the year of 1988 
by two independent researchers James D. Allen and Victor Allis. 
Allen provided extensive analysis in his publication “Expert 
Play in Connect-Four”, deconstructing the game into discrete 
scenarios and how to go about them [1] while Allis presented a 
knowledge-based solution to the game [2]. Since then, there 
have been many different approaches to solving the game, 
including the application of algorithms such as Q-Learning, 
MiniMax, Alpha-Beta pruning, Monte Carlo Tree Search, and 
many others 

II. PROBLEM STATEMENT 

Our original goal was to explore many of these different 
methods to evaluate their performance and metrics in relation to 
one another, but this was simplified down to the exploration of 
a few select methods & evaluation of their own respective 
strengths and weaknesses (due to the withdrawal of two 
members from the project). The first explored method consisted 
of a deep Q-Learning approach, experimenting primarily with 
different configurations of deep neural networks (DNNs). The 
second method explored was creating a classifier that could 
identify if a board state was winning or losing for the player 
going first. We wanted to explore this approach because of the 
nature that Connect Four is played, once a piece is played that 
piece cannot be removed or changed (i.e., pieces are static) 
unlike a game like chess or go. A game of Connect 4 can be 
visualized as an adirectional, acyclical tree. Assuming at least 
one player is playing optimally, once a player makes a move that 
is winning they will always be winning and vice versa for player 
making a losing move. Therefore, if we can create a model that 
can classify winning board positions, and create an agent that 
searches when playing the game, we can theoretically, create a 
Connect Four agent that can explore game options with prior 
knowledge of the game, and therefore speed up learning by 
reducing the number of episodes needed.  

III. DATASETS 

2 different datasets were obtained online, one from UCI.edu 
[3] and another one obtained from Kaggle.com [4] 

A. UCI Dataset (Dataset 1) 

This dataset contains every board position in Connect Four 

eight moves into the game and the result of the game assuming 

both players are playing optimally. Another condition for the 

dataset is that neither player has already won the game and the 

next move is not forced (e.g., neither player 1 or 2 has 3 in a 

row). This dataset was created and mathematically proven by 

John Tromp, a Dutch computer scientist [5]. Classes in the 

dataset are labeled as either {win, loss, draw} and the feature 

vector contains 42 features, each one representing a position on 

the board. The feature vector is organized column-wise (x0 is 

the first row, first column, x1 is the second row first column on 

the board). The feature vector is labeled as {x, o, b} x 

representing player 1’s pieces, o player 2’s and b representing 

unoccupied positions. The data set contains 67,558 entries, of 

these entries 44,474 (65.8%) are classed as win, 16,636 (24.6%) 

are classed as loss and 6,450 (9.6%) are classed as draw. 

Before any of this data was used for training or testing, 

feature labels were changed from {x, o, b} to {1, -1, 0}, class 

labels were changed from {win, loss, draw} to one hot encoding 

and the dataset was separated into 3 different files one for each 

class.  

B. Kaggle Dataset (Dataset 2) 

This dataset contains some possible board state after the 

game as concluded. Classes in the data set are labeled either {1, 

-1, 0} 1 for a win, -1 for a loss, 0 for a draw and the feature 

vector contains 42 features, each one representing a position on 

the board. It is organized row wise (x0 is the bottom row, first 

column, x1 is bottom row, second column). The feature vector 

is labeled as {1, -1, 0} 1 represents player 1’s position, -1 

represents player 2’s position and 0 represent unoccupied 

positions. The data set contains 376,620 entries, of these entries 

181,256 (48.1%) are classed as 1, 180,868 (48.0%) are classed 

as -1, 14,498 (3.9%) are classed as 0. 

Before any of this data was used for training or testing, 

feature labels were changed to column wise orientation, class 

labels were changed to one hot encoding and the dataset was 

separated into 3 different files, one for each class.  

IV. LIBRARIES AND TOOLS 

We primarily used TensorFlow and Keras for our model 

implementations. The sequential model was used as the 
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baseline for the Q-Learning approach, as well as the model 

based approaches. 

For initial experimentation, the logistic regression 

classifier provided in the course assignments was also used. As 

well as sklearn’s implementation of the logistic regression, 

SVM and GBM classifiers. 

V. EXPLORED METHODS 

A. Q-Learning 

Q-Learning is a model-free reinforcement learning (RL) 

algorithm. It is considered an off-policy technique as it can 

learn an optimal policy largely from exploration (i.e. random 

moves), independently from the policy being learned and the 

agent’s actions. At its core, Q-Learning can be represented as a 

state to action-value table, with one cell for every state and 

action pair. As such, it is a value-based algorithm, as it attempts 

to learn the net reward values for subsequent action states from 

any given state, taking the action that maximizes the net reward. 

Using the Bellman equation value function to propagate 

rewards, Q-Learning can learn an optimal playing strategy with 

no prior knowledge of the environment. 

In the context of the Connect Four game, there are no more 

than 7 possible actions at any given state (one for each column 

slot), but the total number of states for a vanilla 6x7 game board 

is gargantuan, exceeding 4 trillion legal states [2]. As it is 

infeasible to store and manage such a large table, the 

workaround approach is Deep Q-Learning (DQL), where a 

deep neural network (DNN) is used to estimate the action 

reward values for any given state. 

Two main deep neural network (DNN) models were 

explored for this problem. The first was a simple fully-

connected DNN with varying number of layers and neurons, 

and the second was a convolutional neural network (CNN) to 

leverage the spatial relationships of the environment. The initial 

input for both models was 42 features (one for each slot in the 

game board, depicting its value), and with a linear activation 

output of 7 values (one for each column, i.e. the estimated 

reward for that column action). The ReLU activation function 

was used for all intermediate layers, Adam was chosen as the 

optimizer, and mean squared error (MSE) was used as the loss 

function. The rest of the setup of both model types varied for 

each testing instance. 

Reinforcement learning has a set of fixed variables called 

hyperparameters. The first of which is epsilon, which signifies 

exploration rate. For each agent & model, the epsilon value was 

evaluated as: 

𝜖𝑥 = max (0.995𝑥 , 0.05)  (1) 

Where x is the current episode number. This decay works 

well to help the agent explore the game board early on, but 

primarily focus on exploitation once it has good knowledge of 

the environment. This epsilon function produces the following 

curve. 

 
Fig 1. Epsilon decay curve used for all DQL models 

Gamma, which is the discount factor used in the Bellman 

equation, was set between 0.9 to 0.95. The reasoning behind 

such a high discount factor is its desired effect of reward 

propagation throughout the board, making prospective rewards 

in future states easier to notice ahead of time. Low gamma 

values result in reward short-sightedness, which is not 

preferable. 

Another common technique for DQL models is experience 

replay. The idea behind this technique is the storing of state 

transitions and their generated rewards in a memory/feedback 

buffer as training samples, and then selecting a random batch 

from this buffer during each training iteration. In contrast to 

sequential sampling, this approach breaks any high correlation 

between samples, which tends to result in more efficient 

learning [6]. This standard technique was used to train the 

models, with varying sizes of the replay buffer. 

To evaluate each model, a fixed set of metrics was used. 

This included the average loss, win/draw/loss rate, error/invalid 

move rate (counted each time the agent tried to choose an 

inaccessible column), average move count, and average episode 

reward. These metrics, averaged over finite episode intervals, 

proved sufficient enough to deduce strengths and weaknesses 

of each configuration, and adequately allowed for comparison 

between the various tested models and setups. 

B. Model Based Approach 

Since the DQL approach requires a model to estimate action 
reward values for any given state, we believe that creating a 
model from existing data that can classify whether a board that 
is winning or losing would reducing the amount of training 
required for a DQL network to learn.  

We decided to compare how effective both a multi-layer 
perceptron (MLP) and a convolutional neural network (CNN) at 
classifying unfinished games. We chose a CNN because of the 
spatial nature of the Connect Four board and because the feature 
vector of our data is small, we believed that a MLP could also 
be very effective and efficient. To evaluate each of these models, 
we decided that accuracy would be the best metric to compare 
the model’s effectiveness, and since we would be working with 
multiclass data creating confusion matrices of our data would let 
us know which classes the models were having trouble 
identifying.  



Since we were working with 2 separate datasets we decided 
to start with simple classifiers, since they are easier and faster to 
train. By training and testing with out simple classifiers we can 
see which combination of data is most effective for comparing 
MLP and CNN structure. Ideally, we would want data that 
creates the least confusion in our results.  

1) Data Splitting and Simple Classifier Tests. For training 

our simple classifiers we decided to evaluate the following 

methods: 1) Training on incomplete games and testing on 

incomplete games. 2) Training on incomplete games and testing 

on complete games 3) Training on complete games and testing 

on incomplete games. We chose logistic regression (logreg), 

state vector machines (SVM) and gradient boosting machine 

(GBM) for our simple classifiers. These were chosen because 

these algorithms are fast and are easy to implement. 

As for splitting our data for each method, all training data 

had 10,000 samples and test data had 5,000 samples. Ratios 

between classes were always equal regardless of the method we 

were experimenting, for example, if we were training/testing a 

model that included the class labels {draw, win, loss}, their 

respective ratios would be {1/3, 1/3, 1/3} for both testing and 

training sets. If we were training a model that only included the 

class labels {win, loss} their respective ratios would be {1/2, 

1/2}. 

VI. RESULTS AND OBSERVATIONS 

A. Q-Learning  

The initial three tests consisted of a simple fully-connected 

DNN with around 5 dense layers of 42 neurons each. These 

tests were conducted to evaluate different learning rates, with 

the agent playing against a random adversary – one that picks 

actions at random. The lowest attempted learning rate, 1e-5, 

gave good results and allowed the agent to learn an optimal 

strategy fairly quickly. The next learning rate, 1e-4, gave 

similar results, but the various metrics were less stable and 

slightly more variant than those from 1e-5, but the agent learned 

an optimal strategy a bit faster. The last test used the largest 

learning rate of 1e-3, and the agent managed to learn an optimal 

strategy the quickest, but with the most instability (as each 

reward affected the model considerably). This final test also 

succumbed to the problem of not using a sufficiently large 

enough replay buffer, causing the model to erroneously adapt 

to a poorer strategy after 20k episodes and never recover (due 

to a low epsilon value past 6k episodes). As a result of these 

tests, 1e-4 was used as the baseline learning rate.  

The next phase of testing shifted to a 2D convolutional 

approach, using the same problem of random adversarial play 

but with a CNN model. The model was constructed with a 

single 2D convolutional layer, followed by a few dense layers. 

For the first model, 2x2 max pooling was also added, but was 

not found to be helpful. This first model performed 

considerably better than its DNN counterparts, reaching a stable 

90% win-rate average after around 40,000 episodes. The even-

shaped 4x4 filter size did not seem to negatively affect the 

learning ability very much, despite the common practice to 

avoid odd-sized filters due to distortions [7]. However, to 

address this notion, another CNN model was tested with a 5x5 

filter instead, and this showed an improvement to the previous 

model, with a 95% win-rate at 40k episodes. For this latter 

model, the invalid rate was also considerably lower (Figure 2). 

Fig 2. Performance comparison between simple dense DNN model and a 

CNN model, both using a learning rate of 1e-5, averaged by groupings of 500 

episodes. 

 With the established data from the previous tests, the last 

phase of testing attempted to teach an agent how to play against 

a smarter adversary. This adversary would place a winning 

move whenever possible, and avoid/block any available 

winning moves for the agent. This forced the agent to play more 

defensively, and search for states with several winning move 

options. The most effective model was a CNN using a single 

5x5 filter 2D convolutional layer with 256 outputs, 1e-4 

learning rate, 10% spatial dropout, and 3 additional dense 

layers. Using this model, after 50k episodes the agent was able 

to cleverly win around 35% of the time, with a relatively low 

invalid rate of 15% (see Figure 3). The other two training 

models, one being another CNN with a lower learning rate, and 

the other a regular DNN, the results were not as impressive, 

with less than 25% win-rate at 50k episodes. 

 
Fig 3. Reward comparison between three similar models, averaged by 

groupings of 100 episodes. The model with the smaller learning rate gave the 

best results among these training runs. 

CNN models were found to be an effective method for this 

deep Q-Learning approach. However, this approach would 

likely require a very high number of training episodes in order 

to “master” the game board through DQL, thus is likely not the 

best for solving the game in an efficient manner. For simple 

tasks however, like playing against a random adversary, this 

approach is fairly effective, as the complexity of blocking 

opponent wins and relying on multiple win strategies is 

practically eliminated. 

To continue this approach going forward, the training can 

be run for a 50k+ more episodes. If no substantial progress is 



made, increasing the learning rate further may be beneficial, as 

long as the replay buffer is made sufficiently large such that 

significant rewards are not excessively sampled (as this could 

give the model an erroneous bias). A better reward function 

should also theoretically help this approach for harder 

adversary play, as our implementation was limited to end-game 

rewards, making it more difficult for the agent to learn on such 

relatively rare stimulations, given that the smarter adversary 

makes it very difficult for wins to be discovered. Using a 

complementary model that can estimate win chance for reward 

distribution may be a promising addition. For efficiency, this 

approach would also need to be migrated to run on the GPU, as 

the standard implementation of Q-Learning is largely 

sequential. 

B. Simple Classifiers 

1) Training Simple Classifiers with Incomplete Games  and 

Testing on Incomplete Games. First training tests that we did 

was training non neural network classifiers. We chose this 

approach to see how the classifiers behaved working with this 

dataset and to see if we needed more data. From this test max 

accuracy was below 70% (Figure 5) which we found 

unacceptable. Creating a confusion matrix (Figure 4) of the 

results showed that the simple classifiers had a difficult time 

classifying draws correctly, with the highest accuracy being 

69% and the lowest being 33%.  

 

 
Fig 4. SVM, LogReg and GBM confusion matrix for trained and Tested on 

Dataset 1 

 
Fig 5. Simple Classifier Accuracy, Trained and Tested on Dataset 1, with 

Draws 

Since training our data with draws created a lot of 

confusion, we wanted to see how the algorithms performed on 

classifying wins or losses. We expected that overall accuracy 

would increase by 10-20% (the average of falsely predicting a 

draw for a win or loss). While our prediction was semi true, and 

that overall accuracy did increase (Figure 6), we noticed that 

number of false positives for win and loss labels also increased, 

for some cases it was insignificant margins (<5%) in other cases 

it was as high as 10% (Figure 7). As a result draw cases were 

excluded for future models.  

 

Fig 6. Simple Classifier Accuracy, Trained and Test on Dataset 1, no draws 

 

 

Fig 7. SVM, LogReg and GBM confusion matrix for Trained and Tested on 

Dataset 1, no draws 

2) Training Simple Classifiers with Complete Games 

including Testing on Complete Games. Since Dataset 1 only 

contained 8-ply moves, we believe that our algorithms would 

have a difficult time determining if a board state is winning or 

losing if it contained a configuration that has more that eight 

pieces on the board. Since Dataset 2 contained positions that 

were more than 8-ply we created this test to see how it would 

perform. We noticed our algorithms performed extremely 

poorly in this scenario, performing below 50% accuracy 

(Figure 8). 



 

Fig 8. Simple Classifiers Accuracy Trained on Incompleted games, Tested 

on Complete Games 

Given the results of our last test we believed that 

training the models on complete games would improve the 

overall accuracy since the data is more diverse data points to 

learn from. Training and testing on complete game resulted in 

very high accuracies, higher than previous examples (Figure 9). 

Therefore, when calculating which neural network setups 

would be best to train Connect Four boards on, we will be 

training our examples on completed games and tested them on 

complete games. 

 

Fig 9. Simple Classifier Accuracy, Trained and Test on Dataset 2 

C. Creating Neural Networks 

For out network structures, we decided the best approach 

was to use cross entropy loss and an Adam optimizer. We 

compared different network structures by training them with 

completed games and testing them on completed games.  

1) CNN Structure. 9 different CNN setups were considered 

(Figure 10), ranging from the amount and size of fully 

connected layers amount and size of convolution filters, and we 

found that the best performing setup was the following. The 

first layer is a reshape layer, it reshapes the 1x42 input into a 

6x7 for the convolution. Second layer is a 2D convolution with 

256 filters and a filter size of 5x5. Third layer was a flatten 

layer. The fourth and fifth layer were 2 fully connected layers 

with over 200 outputs. Sixth layer was a fully connected layer 

with ReLU activation and an output size of 42. Seventh layer 

was a dropout layer with a rate of 0.1. The output layer was 

fully connected layer with softmax activation and an output of 

3 (1 for each class). 

Notice that, networks 1-5 has a convolution filter of 3x3, 

network 6 had a 4x4 filter and networks 6-9 had a convolution 

filter of size 5x5. The most significant improvement was 

increasing the filter size to 5x5, this is most likely since the 5x5 

filter is large enough to filter board sequences that are winning, 

(i.e. 4 in a row opportunities which the 3x3 filter is not larger 

enough to filter). Max pooling (Network 5) and using multiple 

convolution layers (Networks 4 & 5) had no effects.  

 

 

Fig 10. Accuracy Comparison of 9 different CNN Structures 

2) MLP Structure. 7 Different MLP setups were considered 

(Figure 11), with ranging from wide networks with few layers 

but more parameters (Networks 1-4) to more deep networks 

with fewer parameters (Networks 5-7). We found the best 

performing setup was a wide network structure, based on 

average accuracy per epoch. It had 3 large dense layers (>200 

outputs), 1 small dense layer (<50 outputs), 1 dropout layer with 

a rate of 0.1 and the output layer with 3 outputs. All dense layers 

used ReLU activation and the output layer used softmax 

activation. 

The accuracy spread between the setups with the highest 

average accuracy vs. lowest average accuracy was much closer 

than the spread for the different CNN setups. 

 

Fig 11. Accuracy Comparison of 7 different MLP Structures 

D. Comparing NN classifiers with Simple Classifiers 

1) Training with Complete Games, Testing on Complete 

Games The neural networks performed better than the simple 

classifiers (Figure 12) for this test. We found that the neural 

networks were better at determining if there was a draw in a 

finished game than the simple classifiers 



 

Fig 12. Comparing NNs vs Simple Classifiers, Training and Testing on 

Completed Games Data 

2) Training with Complete Games, Testing on Incomplete 

Games. We found that the neural networks performed on par or 

worse than the simple classifiers when we trained it in on 

complete games data and testing it on incomplete game data 

(Figure 13).  

 

Fig 13. Comparing NNs vs Simple Classifiers, Training on Completed 

Games Data and Testing on Incomplete Game Data 

We speculate that the cause for this poor result is either due 

to overfitting, not enough diversity in the training data (i.e. 

since the training data used finished game states with mostly 

filled boards, it improperly knows how to predict emptier board 

states) or our complete game data set did not contain enough 

examples of perfect play. 

3) Training on Mixed Data, Testing on Incomplete Games. 

For this test, we took approximately 2,000 samples of 

incomplete game data and added it to our complete data set 

(removing 2,000 samples that were originally there). We found 

that our neural networks performed a lot better (Figure 14) than 

on the previous example. This supports our previous hypothesis 

that the number of blank board states and our data containing 

non perfect play since our models were able to adjust and 

perform even better than the simple classifiers. 

 

Fig 14. Comparing NNs vs Simple Classifiers, Training on Completed 

Games Data and Testing on Incomplete Game Data 

E. Next Steps for the ML approach to this problem  

We consider this part of the approach unsatisfactory, since 

our goal was to create a classifier that can test to see if a board 

state is winning or losing by only training it with finished 

games. However, we see there were some minor successes, 

training the data on the mixed data set gave valuable insight on 

improving this approach to the problem. Should this project 

continue, an ideal next step would be to identify the error that 

caused poor results. Going off earlier speculations, possible 

solutions include 1) Using deeper networks not wider ones, 2) 

Diversifying our data used 3) Adjusting our model to better 

identify key configuration and reduce the affect blank spaces 

have on the prediction. Using a deeper network with fewer 

parameters in some cases was shown to reduce the amount of 

overfitting and improve generalizability [8]. By diversifying 

the amount of data we are training on, our model can learn from 

different examples. Finding a dataset that includes more than 

just 8-ply moves of perfect play position, we would be able to 

evaluate how our models compare in board positions with more 

pieces.  
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