
Detecting Face Masks for Medical Professionals
Mushahid Khan

Department of Computer Science
Ryerson University

mushahid.khan@ryerson.ca

Sarah Sohana
Department of Computer Science

Ryerson University
sarah.sohana@ryerson.ca

Ahmed Aldaeni
Department of Computer Science

Ryerson University
ahmed.aldaeni@ryerson.ca

Abstract—The COVID-19 pandemic has caused a
global health crisis. One of the effective protection methods
is to practice social distancing. However, this is not always
possible, especially for medical professionals. They have
to save lives, wearing masks on a daily basis. For this
project, we were interested in combining Convolutional
Neural Networks(CNN) with classical machine learning
algorithms to detect whether an individual is wearing a
mask or not in real time. Our approach has two parts
to it. The first part involves using CNN to do feature
extraction. The second part involves using Support Vector
Machine(SVM), K-nearest neighbor(KNN) and Decision
Tree to do real-time classification of people wearing masks
or not wearing masks. This method greatly improves the
performance of the classical algorithms.

Index Terms—Deep Learning; Convolutional Neural
Network; Support Vector Machine; K-nearest neighbor;
Decision Tree; COVID-19

I. INTRODUCTION

A. Problem Description

COVID-19 virus is spreading very rapidly all around
the world. It is affecting every industry and every day
of life, which has caused a high infection and death
rate. For the prevention of the spread of the virus,
people have to practice social distancing. However, social
distancing is not always possible especially in the case
of medical professionals. Medical professionals deal with
COVID-19 cases every day. They have to always protect
themselves while they are saving lives, wearing masks.
If there is a case where a doctor forgets to wear their
mask, they could be in serious danger. In such a case,
they should be notified immediately.

B. Prior Work

Face mask detection, as an important research di-
rection for computer vision, has been widely studied in
recent years. In general, most of the focus has been on
face construction and classification of whether someone
is wearing a mask or not. For this project, our focus

has been on identifying whether people are wearing or
not wearing face masks to help reduce the transmission
and spread of COVID-19. In [1], the authors presented
a system for detecting face masks using Facemasknet
deep learning network in real-time. The overall objective
in [1] was to detect if an individual was wearing a
mask or not in images and live video streams. The
proposed system achieved 98.6% accuracy. [2] presented
a hybrid deep transfer learning model with machine
learning methods for face mask detection in the era of
the COVID-19 pandemic. The model in [2] used deep
transferring learning (ResNet50) as a feature extractor
and classical machine learning algorithms to classify
images of people with and without masks. The model
in [2] achieved 99.49% accuracy.

II. OVERVIEW

Machine learning solutions can greatly assist in
the fight against COVID-19. Using classical machine
learning algorithms with deep learning models can work
great for detecting whether an individual is wearing a
face mask or not. The proposed model here first trains
the CNN algorithm to do feature extraction on images
of people with and without masks. Once the features are
extracted, it uses classical machine learning algorithms
to detect whether a person is wearing a mask or not in
real time. The classical algorithms used are SVM, KNN
and Decision Tree.

III. PROBLEM STATEMENT

Currently, the spread of the COVID-19 virus has
caused a high infection and death rate. Since inception,
there have been approximately 66 million reported cases.
Of these 66 million, at least 1.5 million people have
died. This global pandemic has meant that medical
professionals are working around the clock to save lives
while risking their own lives at the front lines. To prevent
the spread of the virus, people need to wear face masks
all the time, especially in the health sector. 40% of people



with COVID-19 are asymptomatic but are potentially
able to transmit the virus to others. So it is important to
wear masks. Medical professionals always need to wear
masks to not only protect themselves, but also to prevent
the spread of the virus in hospitals. In the case of when
a medical professional forgets to wear their mask, they
should be notified immediately about it. This can greatly
help save lives.

IV. DATASET

For this project, the face mask image dataset from
Kaggle was used [3]. This data set has 11,800 colored
images of people with and without masks. All the images
are not the same size. The dataset is balanced. This
dataset was originally divided up into the following
folders: Test, Validation and Train. We combined all
the images into one folder, with two subfolders. The
first subfolder consists all the images of people wearing
masks and the second subfolder consists of images of
people without masks. We did this so that we can do
data preprocessing on all of them at once and then divide
up the dataset into training, validation and test sets to
maximize the efficiency as well as accuracy of the model.
Few sample images from the dataset are shown in Fig.
1.

Fig. 1. Sample images from the dataset before preprocessing

V. METHODS AND MODELS

A. Data Preprocessing

Data preprocessing involves getting the data ready
to be consumed by the machine learning algorithms.
Before implementing the model, we had to do some
image preprocessing. We started by converting all images
into grayscale as colors are not an essential feature in
detecting whether someone is wearing or not wearing

a mask. Next, all the images were resized to be 100 x
100 pixels. This was done because each image in the
dataset was of different size. Few sample images from
the dataset after preprocessing are shown in Fig. 2.

Fig. 2. Samples images from dataset after preprocessing

B. Train, Validation and Test Sets

Once the images were preprocessed, they were split
into training and test sets. 90% of the dataset was used
to train the CNN model for feature extraction which
was then used to train the classical machine learning
algorithms. The remaining 10% was used to test the
classical machine learning algorithms. Also, 20% of the
training dataset was used as a validation set.

VI. METHODS AND MODELS

The proposed model consists of two primary com-
ponents. The first consists of using CNN to extract
features of images of people with and without masks.
The second consists of using the features extracted as
inputs to train the following classical machine learning
algorithms: SVM, KNN and Decision Tree. The classical
machine learning algorithm that performs the best on
features extracted from the test set will then be used to
detect if an individual is wearing a mask or not in real
time. This model in the training stage can be seen below
in Fig. 3.



Fig. 3. The proposed model

When it comes to detecting in real time, OpenCV,
which is a cascade classifier, will be used to detect the
face. The area of interest, in this case being the face,
will be passed as an image to CNN to have its features
extracted. Then the features extracted will be passed into
the best performing classical machine learning algorithm.

A. CNN for Feature Extraction

CNN is a class of neural networks which is most
commonly used for analyzing images. CNN can take
in an image input and assign importance (weights and
biases) to different aspects in the image as well as
learn to differentiate between them. CNN’s architecture
is inspired by how the visual cortex is organized and is
analogous to that of the connected patterns of neurons
in a human’s brain. For feature extraction, each input
image is passed through a series of the following layers:

• Convolutional
• Pooling
• Rectified Linear Unit(ReLU)

The convolutional layer performs an operation called
convolution on the input image. Convolution is a linear
operation in which the set of weights are multiplied by
the inputs. It puts images through convolutional filters or
kernels. The dimensions of the output of the convolution
layer are less than the input’s. These filters activate
certain features from the image.

Pooling layer reduces the spatial size of the input
so that the number of parameters and computation in the
network is reduced. Pooling also helps prevent overfitting
as it provides an abstracted form of the representation.
The ReLU layer changes all the negative values to 0 as
shown in equation (1) below where x is the input to the

ReLU layer. For this project, the CNN architecture can
be seen in Fig. 4.

f(x) = max(0, x) (1)

Fig. 4. CNN architecture used in this project

The input image, which is 100 x 100 pixels, is put
through a convolutional layer of size 200 where each
kernel is 3 x 3. Next, the output from the convolutional
layer is passed into a ReLu layer and finally into a
pooling layer of size 2 x 2. Then, the same thing is done
again for the second time, but this time the convolutional
layer has a size of 100. Then, the output from the
second pooling layer is flattened into a vector. After
being flattened, dropout is applied to it. Dropout layer
works by randomly setting outgoing edges in the hidden
layer to 0. This technique helps prevent a model from
overfitting. Once dropout has been applied, the result
is passed into a dense layer of reduced dimension. The
output from the dense layer is the feature vector which
we pass into the classical machine learning algorithms.



B. SVM

SVM is a supervised machine learning algorithm
which is used for classification. In this, data points
are transformed into a higher dimension space using a
technique called the kernel trick. Then, classification is
performed by finding a hyper-plane which differentiates
the two classes. For this project, we transformed the
feature vector into 3 dimensions using the radial basis
function kernel.

C. KNN

KNN is a learning algorithm that looks at the labels
of k number of data points which are closest to the target
data point, using a distance formula such as euclidean
distance, to make a prediction about the class for the
target data point. Here, k is the hyperparameter and that
needs to be chosen when the algorithm is getting used.
For this project’s dataset, using 9 neighbors worked best.

D. Decision Tree

Decision tree is a classification model in the form of
a tree structure. The data set is broken down into smaller
subsets as the tree is incrementally developed.

E. Performance Metrics Used

For evaluating the performance of the model, we
used several performance metrics namely- Accuracy,
Precision, Recall, F1 Score and false positive rate from
Confusion matrix. Accuracy is the number of correctly
classified images of people wearing masks over all the
predictions made. Accuracy is a very good measure to
evaluate performance if the data is balanced. Precision is
the number of positive predictions that are correct over
all the positive predictions. A positive prediction is a
prediction which states that someone is wearing a mask.
Recall is the measure of how many true positives get
predicted out of all the positives in the data. F1 score is
the harmonic mean between Precision and Recall. The
higher the F1 score, the more accurate the model is.
False positive rate (FPR) is a measure for how many
negative cases get incorrectly identified as positive. In
our project, it means the number of cases where people
are not wearing masks but has been identified as wearing
masks. The equations for Accuracy, Precision, Recall, F1
score and FPR are given below:

Accuracy =
TP + TN

(TP + FP ) + (TN + FN)
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1Score = 2 ∗ (Precision ∗Recall)

Precision+Recall
(5)

FPR =
FP

TN + FP
(6)

TP is the count of True Positive samples, TN is the
count of True Negative samples, FP is the count of False
Positive samples, and FN is the count of False Negative
samples. The TP, FP, TN and FN are represented in
a grid-like structure called the Confusion matrix. This
is used to describe the performance of a classification
model on a set of test data for which the true values are
known.

VII. RESULTS AND DISCUSSIONS

Fig. 7 presents the accuracy for the SVM, Decision
tree and KNN given our test set. SVM and KNN had
the highest accuracy of 0.989 whereas Decision tree had
the accuracy of 0.983.

Fig. 5. Accuracy for classification algorithms

Fig. 8 illustrates the achieved Precision, Recall and
F1 score for SVM, KNN and Decision Tree algorithms.
SVM had the highest Precision (0.996), KNN had the
second highest Precision score (0.994) and Decision tree
had the lowest (0.990). For Recall, KNN had the highest
value. F1 score seeks balance between Precision and
Recall. Again, we observed that SVM and KNN had
the highest F1 score (0.9891).

Confusion matrices are another useful insight into
the performance of the classifiers. Fig. 9, 10 and 11



Fig. 6. Precision, Recall and F1 score for the classification algorithms

illustrate the confusion matrices for SVM, KNN and De-
cision tree respectively for the test data. In the Confusion
matrix, 0 represents the label of wearing a mask and 1
represents the label of not wearing a mask. Using the
Confusion matrices, we can calculate the false positive
rates. False positive rate is important here because if the
model misclassifies a person who is not wearing a mask
as wearing a mask, this can cause serious problems. If
a healthcare professional is not wearing a mask but the
model predicts that they are wearing a mask, then the
life of the healthcare professional is at risk. SVM had
the false positive rate of 0.004, KNN had the rate of
0.006 and Decision tree had the highest rate of 0.010.
We observed that SVM had the lowest false positive rate
among the three classification models.

Fig. 7. Confusion Matrix for SVM

Fig. 8. Confusion Matrix for KNN

Fig. 9. Confusion Matrix for Decision Tree

Considering the Accuracy and F1 score, SVM and
KNN performed best. Considering Precision, SVM had
the highest score. Looking at the Confusion matrices and
the false positive rates, SVM had the lowest false positive
rate. Using the above evaluations, we chose SVM to do
classification in real-time.

VIII. FUTURE WORK

If we were to continue the project, we would like
to add a cell phone notification system and a video
surveillance aspect. The video surveillance will make
sure anyone entering the premise has a mask on and will
generate an alert if they are not wearing a mask. The cell
phone notification system will send a text message alert
to the individual, reminding them to wear a mask, if they
are registered in the premise.

IX. IMPLEMENTATION AND CODE

To get ideas for the project and its implementation,
we looked at research papers and blogs. After looking
through numerous sources, the research paper that gave
us our initial idea of using CNN for feature extraction



and classical machine learning algorithms for classifica-
tion was [2].

This project was implemented in the Python lan-
guage. For the implementation of CNN, Keras library’s
Sequential API from Tensorflow was used. Tensorflow
is an open source library to help develop and train
machine learning models. It particularly focuses on train-
ing deep neural networks. The Sequential API enables
the creation of models layer by layer. For the classical
machine learning algorithms, Scikit-Learn library was
used. Scikit-Learn is an open source library for Python
programming language which features various machine
learning algorithms.The code for this project can be
accessed at the following link -

https://github.com/sohanasarah/FaceMaskDetection

REFERENCES

[1] M Inamdar, N Mehendale,“Real-Time Face Mask
Identification Using Facemasknet Deep Learning
Network,” (July 29, 2020). Available at SSRN
3663305 (2020): https://ssrn.com/abstract=3663305 or
http://dx.doi.org/10.2139/ssrn.3663305

[2] M Loey, G Manogaran, MHN Taha, NEM Khalifa,“A hybrid
deep transfer learning model with machine learning methods
for face mask detection in the era of the COVID-19 pan-
demic,”Measurement 167 (2020): 108288.

[3] “Face Mask 12K Images Dataset,”Accessed on: Dec 1, 2020.[On-
line].Available: https://www.kaggle.com/ashishjangra27/face-
mask-12k-images-dataset


	Introduction
	Problem Description
	Prior Work

	Overview
	Problem Statement
	Dataset
	Methods and Models
	Data Preprocessing
	Train, Validation and Test Sets

	Methods and Models
	CNN for Feature Extraction
	SVM
	KNN
	Decision Tree
	Performance Metrics Used

	Results and Discussions
	Future Work
	Implementation and Code
	References

