
Modelling and Predicting Temporal Spread of
COVID-19 in Ontario, Canada

1st Fauzia Jabeen
Mathematics Department

Ryerson University
Toronto, Canada

fauzia.jabeen@ryerson.ca

Abstract—This project aims at predicting the number
of cases in the nearest future using various machine
learning techniques. The quantitative data is taken from
the published data by government of Ontario. This data
is used for training, testing and validation purposes. The
techniques of linear regression, kernel based non-linear
regression and multilayer neural networks were studied
and implemented. The project has given an opportunity to
learn and implement various machine learning techniques
for a real life problem of forecasting COVID-19 cases.

Index Terms—COVID-19, forecasting, prediction, mod-
elling, Ontario COVID-19 data, gradient descent, support
vector machine, neural networks, forward- and back-
propagation.

I. INTRODUCTION

A. Problem Description

With its first case reported in the city of Wuhan, China
in December, 2019 [1] , and first death reported on
January 10, 2020, COrona VIrus Disease - 2019 (abbre-
viated and named as COVID-19, by the World Health
Organization (WHO) [2]), became a global pandemic
[3] over a span of few months. As of December 15,
2020, John Hopkins University [4] has reported more
than 72 million confirmed cases and 1.64 million deaths
due to COVID-19. Almost all countries of the world have
implemented measures like travel restrictions, social
distancing, quarantines, event cancellations, improved
testing and lock-downs to stop or slow down the spread
of this diseases. While virologists have been working
and are introducing vaccines for COVID-19, and medical
experts are developing protocols for clinical handling of
such cases, data scientists and machine learning experts
have been working on developing models to analyse and
predict the spread of the disease. The aim of this project
is to study various machine learning (ML) techniques
and their use in predicting the number of COVID-19

confirmed cases. The study has been focussed on the
data obtained for Ontario.

B. Significance and Challenges

One major challenge is using machine learning (ML)
and artificial intelligence (AI) techniques to model
COVID-19 cases is the size of the dataset. Machine
learning algorithms usually require large datasets for
training. The dataset for COVID-19 is less than a year
long. There are other challenging factors as well. For
example, the virus is new and the knowledge about the
parameters required to predict its spread are unknown.

C. Prior Work

In the last few years, ML techniques have been
successfully applied to various predictive tasks including
stock exchange values [5], company sales [6], weather
prediction [7] and the spread of epidemics [8]. A neural
network based ML technique was proposed by Jia et
al. [9] for predicting the outbreak of hand-foot-mouth
diseases. A number of studies have been made in the
recent past to model, analyse and predict the COVID-19
cases. ML algorithms were used by Hamer et al. [10] to
predict spatio-temporal epidemic spread of pathological
diseases. Fanelli and Piazza [12] have performed for-
casting and analysis of COVID-19 in Italy, France and
China, based on ventilation systems. A regression based
model was developed by Li et al. [11] to determine the
exponential growth of COVID-19 cases. The number of
such studies has been on the increase ever since the onset
of the pandemic.

D. Report Overview

The rest of the report is organised as: Section II
gives details about the problem statement, data gathering,
data cleaning and preparation for the ML algorithms.
In Section III, the description of various models and



methods used in this project is given. Results of the
applications of ML techniques along with observations
and discussion are given in Section IV. The use of
various python packages, pieces of code from GitHub
and other sources in the implementation of the solution
is given in Section V.

II. PROBLEM STATEMENT AND DATASET

A. Problem Statement

In this project, I intend to perform a comparative study
of various machine learning techniques for the prediction
/ analysis of COVID-19 positive cases.

B. Data Source

I have used the data gathered by the Ontario Govern-
ment and made available for public use on their website
Status of COVID-19 Cases in Ontario. The link to the
website in given in [13]. The first confirmed case of
COVID-19 in Ontario was reported on January 26, 2020.
I have used the data from this date to December 13, 2020.

C. Data Cleaning / Preparation

Initially confirmed cases were not reported every day.
Therefore, there are no entries on some dates. Also
on some days testing was not carried out and there
are missing entries for those days. Also the original
raw data includes information other than the number
of confirmed cases. To prepare the dataset for this
project, I wrote down a python function to clean the
data from missing entries and to remove the irrelevant
information. Further, the data is in the form of a time
series of the form x0, x1, · · · , xi, · · · , xN , where xi
is the number of confirmed cases detected on dates
indexed as i = 0, 1, · · · , n. If we assume that the
series is such that the next value in the series depends
only on the just previous value (a Markov chain) then
the prediction of xi+1 depends only on the value of
xi. Therefore, the unknown function to be learnt is
xi+1 = f(xi). Thus, our data can be set up as pairs
of values (x1, x0), (x2, x1), · · · , (xN − 1, xN ). What we
intend to see that the next value for the confirmed
cases could be predicted on the basis of the values
obtained for last few days. For example, if we want
to predict the number of confirmed cases based on the
last three values, the regression function takes the form
xi = f(xi−1, xi−2, xi−3). The resulting dataset is shown
in Table (I).

The size of the input vector (also called step-size) is 3
in this case. In this project, we have experimented with
step-sizes of 3, 5 and 7. The resulting data is then split

TABLE I
MODEL OF THE OUTPUT (PREDICTION) DEPENDING ON

THE LAST THREE DAY’S DATA

Day Index Inputs Output
0 x0 x1 x2 x3

1 x1 x2 x3 x4

· · · · · · · · · · · · · · ·
N − 3 xN−3 xN−2 xN−1 xN

into training, testing and validation datasets. For every
ten days, 7 values are used for training, 2 for testing and
one for validation purposes, all picked at random. The
python function written performs all of the above data
cleaning and preparation steps to produce the training,
testing and validation datasets.

III. METHODS AND MODELS

I have used three possible ways in which this problem
can be modelled: (i) Linear Regression (ii) Support
Vector Regression (SVR) and (iii) Neural Networks.

A. Linear Regression

Based on the material studies in the class, the hy-
pothesis function h(x) for 3-step data can be written in
intercept form as,

h(x) = θ0 + x1θ1 + x2θ2 + x3θ3 (1)

=
[
1 x1 x2 x3

] 
θ0
θ1
θ2
θ3


=

3∑
j=0

xjθj

= xTθ (2)

Now, with n = N − 3, the input matrix X̂ can be
written as

X̂ =


1 x

(0)
1 x

(0)
2 x

(0)
3

1 x
(1)
1 x

(1)
2 x

(1)
3

...
...

...
...

1 x
(2)
1 x

(n)
2 x

(n)
3

 =


–
(
x(0)

)T
–

–
(
x(1)

)T
–

...
–
(
x(n)

)T
–

 (3)

Also the target vector becomes

y =
[
y(0)y(1) · · · y(n)

]T (4)

I have considered mean squared error as the objective
(cost/loss) function J(θ) and can be written as

J(θ) =
1

2

n∑
i=1

(
h(x̂(i))− y(i)

)2
(5)



In vector-matrix form, it can be written as,

J(θ) =
1

2

(
X̂θ − y

)T (
X̂θ − y

)
(6)

In regression techniques, a hypothesis function that min-
imizes the cost (loss) function is determined. Differenti-
ating with respect to θ, the gradient of the cost function
is given by:

∇θJ(θ) = X̂T
(
X̂θ − y

)
(7)

In gradient descent approaches, starting with some initial
values, the vector θ, is updated by some learning rate (α)
times the negative of the gradient vector ∇θJ(θ), i.e.,

θ := θ − α∇θJ(θ) (8)

= θ + α X̂T
(
y − X̂θ

)
In the method Gradient Descent (SGD), the gradient
vector is approximated taking into account all (the whole
batch) of the training input vectors, and the updated θ
is given by the above equation. The method is used
iteratively to find out the converged set of values for θ.
In contract, in the Stochastic Gradient Descent (SGD),
the above equation is used for each input vector turn by
turn to get the converged set of values for θ.

Another way of solving the linear regression problem
is to use the normal equations. These equations are
obtained by setting the above gradient equal to zero,
leading to a system of equations of the form:

Aθ = b (9)

where,

A = X̂TX̂ (10)

b = X̂Ty

The above equation can be solved using python’s
NUMPY na.linalg.solve(A,b) solver. I have
implemented linear regression with normal equations
using the feature-map of degree-3 polynomial (using the
starter code provided). The scatter plot of the training
data and the plot of the learnt hypothesis as smooth curve
are shown in Figure

B. Support Vector Regression - SVR

Support Vector Regression (SVR) is an extension
of the idea of Support Vector Machine (SVM). For
linear classification problems, an SVM finds out that
line (decision boundary) that has the greatest distance to
the points closest to it. The closest points that identify

this line are known as support vectors and the region
between these points around the decision boundary is
known as the margin. A parameter (usually labelled as
’C’) determines the margin (the margin decreases as C
is increased). For non-linear separable data, the data is
first transformed in a way so that a hyperplane could be
determined as a decision boundary. This transformation
is accomplished via the use of kernel functions. Some
of the popular kernels are: Radial Basis Function (RBF),
Polynomial and Sigmoid. The kernel functions give a
non-linear capability to SVM.

SVR can be considered as an adapted version of SVM
where the dependent variable is numerical rather than
categorical (binary) in nature. SVR is a non-parametric
technique, meaning that it does not depend on the
Markov assumption and depends on the kernel functions.
This in turn, means that we can use the (date-number
of confirmed cases) data as is, without converting it to
multi-step time series.

C. Neural Networks - NN

Neural networks are the backbone of various state-
of-the-art deep learning algorithms today. I have used
a multi-layered neural network with mini-batch back-
propagation algorithm is this project. A typical neural
network (based on 3-step training/test data) is shown in
Figure(1). A mean squared error function has been used
as the cost (loss) function. Various activation functions
(Sigmoid, Relu, linear etc.) can be used at the hidden
and output layers of the network.

Fig. 1. Architecture of a typical 3-step neural network.

IV. RESULTS AND DISCUSSION

A. Linear Regression

For this part of the project the python code developed
during the execution of the course were modified and



extended to take into account the time series dataset
created in this project. The number of unknowns (θ’s)
for the three cases were 4, 6 and 8. For the GD and
SGD cases, we used a learning parameter α = 2×10−14

after experimenting and gradually decreasing its value
starting from 0.01. It was found that 10, 000 iterations
were required for both GD and SGD for the training data
to match with predicted results. The predicted number of
confirmed cases for the test data for 3, 5 and 7 previous
day’s numbers were determined and compared with the
original numbers. These results compare very well with
those obtained from applying the stochastic gradient
descent regression and are shown in Figures (2), (3) and
(4). It was found that by solving the normal equations,
the predicted results almost have an exact match with
the original test data as shown in Figures (2), (3) and
(4).

Fig. 2. Prediction of confirmed cases for test data using the GD,
SGD and Normal equations trained on the training data.

Fig. 3. Prediction of confirmed cases for test data using the GD,
SGD and Normal equations trained on the training data.

Fig. 4. Prediction of confirmed cases for test data using the GD,
SGD and Normal equations trained on the training data.

B. Support Vector Regression

In case of support vector regression, the original
time series data was used for modelling. A radial basis
function (RBF) kernel was used for training purposes
with C = 1 × 104 and gamma = 0.1. The SVR was
trained using the training data and the results of the
prediction for the test data are shown in Figure (5). The
performance of the trained SVR for the test data is very
good for majority of data points except at the ends.

Fig. 5. Prediction of confirmed cases for test data using RBF kernel
based SVR trained on the training data.

C. Neural Networks

After experimenting with several neural network ar-
chitectures (by gradually increasing the number of layers
and number of neurons in each layer) and various
combinations of activation functions, I selected a neural
network model that was giving good convergence of
the mean square error and good results. The neural
network thus designed has one input layer, two hidden



layers (with 32 and 8 neurons) and an output layer
with one neuron. It was found that sigmoid activa-
tion functions for both the hidden layers were giving
smooth convergence in the mean square error. A linear
activation function was used for the output neuron. The
NN was trained with a learning rate of 0.0005 using
gradient descent to minimize the mean square error cost
function. Three neural networks with different number of
inputs (depending on the three datasets for previous days
counts) with the two hidden layers of 32 and 8 neurons
and one output neuron were used in the experiments.
The number of epoch for each experiment was 1000. The
mean square errors attained for the training and testing
data are shown in Table (II). It can be noticed that the
first neural network for 3-point datasets, gives the least
mean square errors for both the training and testing data.
The other two networks also give good results, but can be
further fine tuned. The original and predicted results are
shown in Figures (7), (9) and (11), while the convergence
of mean square errors are plotted against epoch numbers
in Figures (6), (8) and (10).

TABLE II
MEAN SQUARE ERROR (MSE) FOR TRAINING AND TESTING DATA

FOR THE LAST 3, 5 AND 7 DAY’S DATA

Dataset Mean Squared Error
3-point 5-point 7-point

Training Dataset 0.0003135 0.0004869 0.0008302
Testing Dataset 0.0003181 0.0005716 0.0010293

Fig. 6. Mean squared error (MSE) as the neural network learns the
training data (3-previous day case) over 1000 epochs.

V. IMPLEMENTATION AND CODE

Apart from developing my own code in python, I
studied implementation of various python packages and
their use from a number of Github pages [14], blogs [15]

Fig. 7. Prediction of confirmed cases for test data using the neural
network trained on the training data (3-previous day case).

Fig. 8. Mean squared error (MSE) as the neural network learns the
training data (5-previous day case) over 1000 epochs.

Fig. 9. Prediction of confirmed cases for test data using the neural
network trained on the training data (5-previous day case).

[16] and research papers. I used pandas [17] along with
numpy [18] in the dataGeneration function of my
project. For SVR, I used sklearn [19] python package.
For implementing neural network regression, I used the
python package keras [20]. Some parts of the code
presented on Github pages [14] was used in this project



Fig. 10. Mean squared error (MSE) as the neural network learns the
training data (7-previous day case) over 1000 epochs.

Fig. 11. Prediction of confirmed cases for test data using the neural
network trained on the training data (7-previous day case).

with modifications according to the requirements of the
project.

REFERENCES

[1] C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, “Clinical
features of patients infected with 2019 novel coronavirus in
Wuhan, China,” Lancet, vol. 295(10223), pp. 497–506, 2020.

[2] W.H.O, “Naming the coronavirus disease (COVID-
19) and the virus that causes it,” [Online] Available:
https://www.who.int/emergencies/diseases/novel-coronavirus-
2019/technical-guidance/naming-the-coronavirus-disease-
(covid-2019)-and-the-virus-that-causes-it [Accessed: 13- Dec-
2020].

[3] Catrin Sohrabi, Zaid Alsafi, Niamh O’Neill, Mehdi Khan,
Ahmed Kerwan, Ahmed Al-Jabir, Christos Iosifidis, Riaz Agha,
“World Health Organization declares global emergency: A re-
view of the 2019 novel coronavirus (COVID-19)”, International
Journal of Surgery, vol. 76, pp. 71–76, 2020.

[4] Johns Hopkins coronavirus resource center [Online]. Available:
https://coronavirus.jhu.edu [Accessed: 13- Dec- 2020].

[5] R. Akita, A. Yoshihara, T. Matsubara, K. Uehara, “Deep learn-
ing for stock prediction using numerical and textual informa-
tion”. In Proceedings of the 2016 IEEE/ACIS 15th Interna-
tional Conference on Computer and Information Science (ICIS),
Okayama, Japan, 26–29 June 2016; pp. 1–6.

[6] M. Ali, Y. Lee, “CRM Sales Prediction Using Continuous Time-
Evolving Classification.” In Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence, New Orleans, LA,
USA, 2–7 February 2018.

[7] F. Xiao, Q. Ai, “Data-driven multi-hidden Markov model-based
power quality disturbance prediction that incorporates weather
conditions.” IEEE Trans. Power Syst. vol. 34, pp. 402–412,
2018.

[8] Y. Lu, S. Wang, J. Wang, G. Zhou, Q. Zhang, X. Zhou, B. Niu,
Q. Chen, K. C. Chou, “An epidemic avian influenza prediction
model based on google trends.” Lett. Org. Chem. vol. 16, pp.
303–310, 2019.

[9] W. Jia, X. Li, K. Tan, G. Xie, “Predicting the outbreak of
the hand-foot-mouth diseases in China using recurrent neural
network.” In Proceedings of the 2019 IEEE International Con-
ference on Healthcare Informatics (ICHI), Xi’an, China, 10–13
June 2019; pp. 1–4.

[10] W. B. Hamer, T. Birr, K. A. Verreet, R. Duttmann, H. Klink,
“Spatio-Temporal Prediction of the Epidemic Spread of Dan-
gerous Pathogens Using Machine Learning Methods.” ISPRS
Int. J. Geo-Inf. vol. 9, no. 44., 2020.

[11] Q. Li, W. Feng, Y-H Quan, “Trend and forecasting of the
COVID-10 outbreak in CHina.” J. Infection, vol. 80(4), pp. 469–
496, 2020.

[12] D. Fanelli, F. Piazza, “Analysis and forecast of COVID-19
spreading in China, Italy and France.” Chaos Solitons Fractals,
vol. 134(109761), 2020.

[13] Status of COVID-19 cases in Ontario. [Online]. Avail-
able: https://data.ontario.ca/dataset/status-of-covid-19-cases-in-
ontario [Accessed: 13-Dec-2020]

[14] Source code: Keras loss function, metrics and learning
curves. [Online] Available: https://github.com/keras-
team/keras/issues/7947#issuecomment-413369777 [Accessed:
12-Dec-2020]

[15] A. Ghose, “‘Support vector machine (SVM) tutorial.” [Online]
Available: https://blog.statsbot.co/support-vector-machines-
tutorial-c1618e635e93 [Accessed: 29-Nov-2020]

[16] J. Bownlee, “Regression tutorial with the Keras
deep learning library in python”, Available:
https://machinelearningmastery.com/regression-tutorial-keras-
deep-learning-library-python/ [Accessed: 29-Nov-2020]

[17] Pandas: An open source data analysis and manipulation tool.
https://pandas.pydata.org

[18] NumPy: The fundamental package for scientific computing with
Python. https://numpy.org

[19] scikit-learn: Simple, efficient and open source tools for predic-
tive data analysis and machine learning in Python. https://scikit-
learn.org/stable/

[20] Keras: A deep learning API written in Python, running on top
of the machine learning platform, Tensorflow. https://keras.io


