Video Anomaly Detection and Classification for
Autonomous Deep-Space Robotics

Rohaan Ahmed
Mission Systems Engineer, MDA Space
PhD Computer Science Student, Ryerson University
Toronto, Canada
rohaan.ahmed @ryerson.ca

Abstract—Robotic systems operating in deep space will require
high levels of autonomy, especially with regards to safety and
maintenance. It would be a vital feature, therefore, to have on-
board systems capable of detecting anomalous conditions which
may indicate hazardous or high-priority situations. This paper
introduces a video anomaly detection model which is capable of
detecting anomalous situations based within video. The model
presented is an Unsupervised Convolutional LSTM Autoencoder
which is trained to re-produce Non-anomalous videos, which can
then be used to determine whether an anomaly exists in a test
video via a ”Reconstruction Score”. This score is then used to
Classify the video as either Anomalous or Non-anomalous using
two approaches: A Supervised XGBoost Model, and a Simple
Linear Threshold. We find that our Unsupervised Model does
very well on the Test Dataset in terms of determining when an
anomalous condition occurs. However, due to the small Training
Dataset, we are unable to achieve high Classification accuracies
using Supervised XGBoost Model.

I. INTRODUCTION AND MOTIVATION

Robotic systems operating in deep space will require high
levels of autonomy for operation, maintenance, self-repair, and
for navigating unexpected situations. These systems will face
several unique challenges including communication delays,
intermittent communication dropouts, high levels of elec-
tromagnetic radiation interference, restrictive communication
bandwidth limits, and limited on-board crew time.

This paper proposes a proof of concept for an on-board Al
system that is capable of detecting anomalies in video data
generated onboard in deep space, and classify this data for
transmission to ground-stations.

A direct application benefiting from this system would
be the Canadarm3 robotic system, also referred to as Deep
Space eXploration Robotics (DSXR), which will be Canada’s
contribution to the Lunar Gateway project as part of NASA’s
Artemis Program. The Lunar Gateway will be a space-station
that will orbit the Moon, built to serve as an outpost to enable
sustainable human exploration of the Moon and beyond (Fig
1).

Canadarm3 (Fig 2), a highly-dexterous and autonomous
robotic system, will be used for the Gateway’s construction,
maintenance, inspection, capture of visiting spacecraft, module
relocation, and support of astronauts during spacewalks. This
role will be similar to that of Canadarm2, also known as
the Mobile Servicing System (MSS), on the International
Space Station (ISS) [1], with one critical difference; unlike

Fig. 1: Lunar Orbital Platform-Gateway (Credit: NASA)

Canadarm?2, Canadarm3 will not be operated directly from the
ground and will require far greater levels of autonomy.

With Earth-based ground-stations expected to have only an
estimated 8-hour communication window per week with the
Gateway, a smart agent would be required on-board to both
detect and assess anomalies within video and image data. The
short communication window also imposes constraints on the
total bandwidth of data that can be transmitted to Earth, thus
making on-board intelligence necessary.

II. PROBLEM STATEMENT

The Canadian Space Agency has made it a priority to con-
tribute to the Artemis program in the domains of Robotics and
Artificial Intelligence. The Canadarm3 program will consist of:

1) Exploration Large Arm (XLA): an 8.5-metre-long,
715kg robotic arm

2) Exploration Dextrous Arm (XDA): A smaller, lighter,
and more dexterous robotic arm for finer tasks

3) Robotic Toolbox

4) Ground Segment

5) The Control and Artificial Intelligence system to enable
the autonomous functionality of the above components,

as well as the rest of Gateway. This can be thought of
as the network of all subsystems that form the “brain”
of Canadarm3.

This Al-system proposed in this paper will augment the Al
system (5) via autonomous detection of the following types of
anomalies:

o Structural Anomalies: Anomalies on the Gateway’s struc-
ture itself, such as fractures, tears, rips, etc.

o Proximity Anomalies: Anomalies in the vicinity of the
Gateway’s, such as foreign object debris (FOD) and
anomalous external vehicle behavior.

III. SYSTEMS ENGINEERING APPROACH

A central tenet of the Systems Engineering approach for the
Lunar Gateway is to prove technologies on the ground first.
Therefore, will develop and prove our model on a well-known
openly available anomaly detection dataset for developing the
proof of concept.

IV. DATA SOURCE: UCSD ANOMALY DETECTION
DATASET

The video data used in the project was the openly available
UCSD Anomaly Detection Dataset. The dataset consists of 70
200-frame videos acquired with a stationary camera mounted
at an elevation, overlooking pedestrian walkways. Under “nor-
mal” conditions, the video contains only pedestrians, whereas
“abnormal” events are due to either (i) non-pedestrian objects,
or (ii) anomalous motion patterns. Fig 3 shows an example of
an anomalous video frame.

Fig. 3: Sample Frame from an Anomalous Video in the UCSD
Dataset (Credit: UCSD)

V. MODELS AND DATA ENGINEERING

Fundamentally, an anomaly is an occurrence that deviates
from what is standard, normal, or expected. In other words,
anomalies are rare or abnormal events within otherwise normal
data. Therefore, the detection of anomalies requires separating
rare and unusual events from the “norm”.

A. Supervised vs Unsupervised Methods

Supervised learning approaches typically require well-
labeled and balanced datasets. In order to use a purely su-
pervised method of anomaly detection, we would require a
dataset in which the anomalies themselves are well-represented
and labeled. This conflicts with the very definition of an

“anomaly” presented above, i.e., a rare event. Unsupervised
learning approaches, on the other hand, learn by “clustering”
similar-looking data. Therefore, they are far better suited for
the task of anomaly detection, since they can cluster normal
data.

In this project, we use a hybrid approach of Semi-
Supervised Learning. First, an Unsupervised Model Learns
“normal” behaviour in trainiing and outputs a ”Reconstruction
Score” for inference, which is then used by a Supervised
Model to classify the video.

B. Data Pre-Processing and Data Engineering

The UCSD training dataset contains 34 different Non-
anomalous surveillance videos, with each folder containing
200 sequential video frames. In order to work with this data,
we first perform the following pre-processing:

1) Convert Datatype: From TIFF to PNG.

2) Resizing: Reduce the size of the images to reduce our

network input and output layer sizes.

3) Pixel Normalization: Scale pixel values to between 1
and 0.

4) Generate Training Data: We divide the training videos
into sub-sequences of 10 images (combine frames [1, 2,
... 10], [2, 3, ... 11], ...). Each of these sub-sequences
will form a new input at each time-step.

5) Generate Augmented Training Data: 34 videos is
not sufficient to teach our model, which consists of
millions of parameters. We, therefore, augment the data
by generating “new” scenes using non-sequential frames.
For example, when stride is 3, we combine scenes [1,
4,17, 10, ..., 30]. This stride is a tunable parameter.

VI. UNSUPERVISED MACHINE LEARNING MODEL FOR
ANOMALY DETECTION, AND THE EVALUATION METRIC

The Supervised Machine Model used in our approach is
a Convolutional Long Short-Term Memory (LSTM) Autoen-
coder, developed using a combination of the following well-
known Machine Learning techniques:

A. Convolutional Neural Networks (CNN)

We use CNNs to extract and learn features within the input
images. Each “Convolution Layer” convolves the input to find
abstract representations of the input features. Pooling layers
are added to help reduce the dimensions of these extracted
feature maps. Fig 4 shows a typical CNN architecture.

Since we combine CNNs with an Autoencoder architecture
(explained further on), we also make use of so-called “Decon-
volutional Layers”, which reproduce features and the original
dimensionality from the embeddings.

B. Long Short-Term Memory (LSTM) Recurrent Neural Net-
works (RNN)

LSTM RNNs are regular Artificial Neural Networks
(ANNs) with a feedback loops. This feedback allows the
LSTM to learn from its previous output, in addition to its
current input. Since we are trying to detect anomalies in time-
sequence data, the feedback-loop allows our model to learn

image patch
1 layer

hidden layer 1

4 feature maps

hidden layer 2

8 feature maps

final layer
4 class units

36x36

28x28

14x14 10x10 5x5

! !

convolution max
(kernel: 5x5x4) pooling

f

convolution max
(kernel: 9x9x1) pooling

convolution
(kernel: 5x5x8)

Fig. 4: Convolutional Neural Network Architecture (Credit:
ecognition.com)

not only the spatial features, but also temporal features. In
simpler terms, our model can learn what should happen in a
scene based on what has happened in the past. We use this
technique to learn “normal” motion patterns within scenes.

C. Autoencoders

Autoencoders are a popular ANN-architecture used to recre-
ate an input. We use an Autoencoder to teach our model to
reconstruct the input data as best as possible. It consists of
three sub-sections:

1) Encoder: Given an input, the encoder layers learn repre-

sentations of the inputs while reducing dimensionality.
Our model consists of two encoder layers, one for
spatial encoding (for feature encoding) and one temporal
encoding (for motion encoding).

2) Bottleneck: Taking the encoder’s output as input, the
bottleneck is used to both combine and reduce the
dimensionality of the encoded features, and prepare it
for decoding.

3) Decoder: The decoder layers recreate the original input
as best as possible from the feature embeddings. The
output of the last decoder layer is a best-possible repro-
duction of the original input image.

Fig 5 shows a typical Autoencoder architecture.

We train the model only on non-anomalous data, thus teach-
ing our model to reconstruct only non-anomalous data well.
Then, we use our model to perform inference (predictions)
on anomalous test data. Since the model was never trained to
recreate anomalies, the model should not be able to recreate
the test data with great confidence. We develop a metric for
this confidence, calling it the “Reconstruction Score”.

D. Evaluation Metric: Reconstruction Score

We expect our model to reconstruct “normal” scenes with
low error, and reconstruct anomalous scenes with large errors.
We quantify this error as Reconstruction Score, as follows:

First, we calculate the reconstruction error of each pixel
using the L2 norm (Euclidean Distance):

e(x,y,t) = ||I(1‘7y’t) - fW(I(x’:%t))HQ (1)

where:
I - Pixel Intensity
(z,y) — Pixel Location

Reconstructed

Input < input

Ideally they are identical.
x~x

Bottleneck!

ﬂﬂ ,
gy)

An compressed low dimensional
representation of the input.

Encoder
X 9

Fig. 5: Ilustration of Autoencoder Architecture (Credit: Lilian
Weng lilianweng.github.io/)

t — Frame
fw — LSTM CNN Autoencoder model
Next, we calculate the reconstruction error of the entire
frame ¢ by summing the pixel errors:

e(t) =Y e(w,y,1))

(z,y)

Then we calculate the reconstruction cost of the entire
sequence of 10 input frames:

t+10

=Y e 3)

(i=t)

Next, we normalize the reconstruction cost and call it the
“irregularity score”:

Cr (t) + Cr (t)mln
Cr(t)maa:

sa(t) = “)

The “Reconstruction Score” (or Regularity Score) is then:
sr(t) =1 — s4(t) ®)

Finally, we compute the Reconstruction Score for each 10-
frame sequence in the video and plot it, as illustrated in Fig

Frame 153

Reconstruction Score Plot
095 { T
09 {

No Anomaly Detected T

\/

Anomaly Continues to Appear

Reconstruction Score

Anomaly Appears T
(App. Frame # 64)

°

0 3 E) 3 100 125 150 7S
Frame

Fig. 6: Sample Plot of the Reconstruction Score for an Entire
Test Video

For non-anomalous frames, we expect the Reconstruction
Score to be high (closer to 1), whereas for anomalous frames,
we expect this score to be lower.

10x 256x 256 x 1

Convolution Layer: 11 x 11, 64 filters, stride = 4
(10 x 64 x 64 x 128)

Convolution Layer: 5 x 5, 64 filters, stride = 2
(10 x 32 x 32 x 64)

Convolution LSTM Layer: 3 x 3, 64 filters
(10 x 32 x 32 x 64)

Temporal
Encoder

Convolution LSTM Layer: 3 x 3, 64 filters
(10 x 32 x 32 x 32)

Convolution LSTM Layer: 3 x 3, 64 filters
(10 x 32 x 32 x 64)

T =
58
=
o
L
2a

Deconvolution Layer: 5 x 5, 64 filters, stride =2
(10 x 64 x 64 x 64)

Deconvolution Layer: 11 x 11, 64 filters, stride =4
(10 x 256 x 256 x 64)

Convolutional Layer: 11 x 11, 1 filter
(10 x 256 x 256 x 1)

10x256x256x 1

e S
Reconstructed Output

Fig. 7: The Model: A Convolutional LSTM Autoencoder

E. Model Generation and Training

Fig 7 illustrates the Convolutional LSTM Autoencoder
architecture used for Unsupervised Learning.

Fig 8 shows the complete cycle of Model Generation,
Training, and Inference employed in this project.

Generate
Convolutional
LSTM

Input Test Videos into
the Model and
generate a
Reconstructed Video

Train the Model to reproduce
the Input Videos using Non-

anomalous Training Videos
Autoencoder &

Yes

Anomalous Video / Calculate the

Reconstruction Cost of

N

P N
" Reconstruction .
AN _Cost < Threshold?

Normal Video 4N— \\ ///
o N p

%

the Reconstructed
Video

o

Fig. 8: Model Generation, Training, and Inference Cycle

The Training Data consists of 34 non-anomalous video
sequences of 200 frames each, divided into 190 inputs. We
train the model on non-anomalous data using Euclidean Loss
as our optimization metric, with the goal of recreating the

input sequences. We use the “Adam” optimizer, and set the
learning rate as a decay function, starting at 10~# and ending
with 1075, Lastly, we use Layer Normalization to normalize
the activities of the neurons in the LSTM layers, which helps
reduce the training time. We then train for Epochs to 100 witha
Batch Size of 1.

In each training cycle (illustrated in Fig 9), our model takes
a single 10-frame image sequence as input, reconstructs the
image using the Convolutional LSTM Autoencoder, calculates
the L2 Loss of the reconstruction, and updates the model’s
parameters based on the Loss.

Frame 0-10

Frame 190 - 200

Single 10-Frame Sequence

Original Sequence

\

Reconstructed Sequence
>

Backward Pass |

Convolutional LSTM A d

Fig. 9: Model Training Cycle

FE. Model Inference

Testing Data consists of 36 anomalous videos of 200 frames
each. Anomalies broadly categorized into two categories:

1) Non-pedestrian anomalies: These include wheelchairs,
skaters, bicyclists, carts, etc.

2) Pedestrian anomalies: These include abnormal move-
ment patterns from pedestrians, such as runners, pedes-
trians walking across the grass, etc.

In each inference cycle (illustrated in Fig 10), our model
reconstructs the input, and outputs the Reconstruction Score
as a vector.

VII. SUPERVISED CLASSIFICATION

In order to Classify our videos as Anomalous or Non-
anomalous, we must introduce data-labels (i.e. Supervision).
Fig 11 shows a plot of the Reconstruction Scores for all Test
and Training datasets

It is obvious from the plot that there is no clear separation
boundary between anomalous and non-anomalous Reconstruc-
tion Scores. We, thus, experiment with two approaches for
classification.

Frame 0-10

Frame 190 - 200

Single 10-Frame Sequence

Original Sequence

\ J

Reconstructed Sequence
o Reconstruction
-
Score

=

i \VAVAY A N\ S

, 64 filters, stride = 4

(10 64 x 64 x 128)

Convolution LSTM Layer:

C lutional LSTM A d

=

Fig. 10: Model Inference Cycle

Test Scenes

75 100 135 150 175

Frames

Fig. 11: Combined Plot of the Reconstruction Scores for All
Training and Test Videos

A. Classification Using a Simple Linear Threshold

The first approach looks to find an “optimal” threshold
which gives us the highest overall accuracy, with room for
some mis-classification. We find this value by generating an

Accuracy vs Threshold plot, shown in Fig 12.

~— — Test Accuradies
~ Tain Accuracies
104 \ —— Combined Accuracies
08 1 \

7 \ﬂ
044
T T T T T T T T
0800 0825 0850 0875 0900 0925 0950 0975
Threshold Values

~

Fig. 12: Accuracy vs Threshold Plot

The values in the Threshold vs Accuracy plot were calcu-
lated using the algorithm in Appendix A. From the plot, we see
that we achieve the best overall accuracy results at a threshold
value of approximately 0.875 (shown in Fig 13).

Non-
anomalous

l Anomalous

Test Scenes

095

0.90

Threshold
Value
S 085
&

080

075

070

0 25 S0 75 100 125 150 175

Frames
Train Scenes

Fig. 13: Classification Using a Linear Threshold

With this simple classification approach, we obtain a com-
bined accuracy of approximately 70%.

B. Classification Using XGBoost, a Supervised Learning
Model

In this approach, we use Extreme Gradient Boosting Trees
(XGBoost) to develop a non-linear classification model. XG-
Boost is a tree-based technique able to classify data using
an ensemble of several weak random-forest trees. We use
XGBoost as follows:

o Assign Class Labels of “1” or ”0” to each Anomalous
and Non-anomalous Reconstruction Score vector, respec-
tively.

o Divide the data into a Train Set, containing 90% of the
data, and Test data, containing 10% of the data.

e Train the XGBoost Classifer on the Train Set

o Evaluate the XGBoost model on the test dataset

As a result of performing the above steps, we obtain an

XGBoost classifier with an accuracy of 0.50, which is quite
poor. Analogously, we would be equally successful if we
tossed a coin to classify the videos! This low accuracy is
because our dataset is far too small for a model to learn

from with reasonable accuracy. We only have 70 distinct
Reconstruction Score vectors (videos), with each vector con-
taining 190 features (sequences). This also makes it difficult
to evaluate our model against current best standards using the
same dataset.

VIII. RESULTS AND DISCUSSIONS

Our model was evaluated on the complete Test Dataset,
which consisted only of anomalous videos. Fig 14 shows the
result obtained for Test Data 2 (filename: Test002).

Reconstructed Video

Reconstructed

= Anomalous Motion Path
Original Video 5
&

- Anomalous Object
(skateboarder)

100 150 00 %0
Frame 153

Reconstruction Score Plot

095 T
090

No Anomaly Detected T

Reconstruction Score
o

Anomaly Appears T
(App. Frame # 64)

Anomaly Continues to Appear

s

[] 3 E)) 160 s 150 s
Frame

Fig. 14: Evaluating the Model on a Single Test Video

It can be seen that our model’s Reconstruction Score reflects
the appearance of anomalous data within the scene. In this test
case, we see that the score falls sharply when the anomaly
(skateboarder) appears in the video around Frame 64. The
skateboarder is anomalous due to his/her speed and path of
movement when compared with “normal” walking pedestrians.

For every video in the Test Data, we can see a reflection
in the Reconstruction Score when an anomaly appears. There-
fore, we can safely say that our model does a good job of
finding whether an anomaly exists in the video.

For the purpose of comparison, we ran our model on Non-
anomalous data as well. Fig 15 shows an example of one such
video, Training Data 2 (filename: Train002).

As can be seen in the figure that our model’s Reconstruction
Score remains high (closer to 1), thus indicating that no
anomalous behaviour was detected.

Reconstruction Score

Reconstructed Video

Original Video

No Anomaly Detected

[] E3 EY = 160 15 10 175
Frame

Fig. 15: Evaluating the Model on a Single Train Video

IX. IMPLEMENTATION AND CODE

The code for this project can be found on the author’s
GitHub page (Github.com/rohaan-ahmed). A list of packages
used in the project can be found in Appendix B

X. FUTURE WORK

The project presented in this paper is part of a larger project
for anomaly detection using in-space video. Next steps in this
project are:

[1]

[2]
[3]

[4]

Improve the Unsupervised Learning Model per feedback
from Dr. Nariman Farsad.

Determine a more accurate method of Supervised Clas-
sification.

Evaluate the model on a larger dataset.

Generate a synthetic space-representative dataset, and
fine-tune the model on that dataset.

REFERENCES

About Canadarm3. Canada.ca. Published July 7, 2020. Accessed October
1, 2020.

https://www.asc-csa.gc.ca/eng/canadarm3/about.asp.

Yong Shean Chong, Abnormal Event Detection in Videos using Spa-
tiotemporal Autoencoder (2017), arXiv:1701.01546.

Mahmudul Hasan, Jonghyun Choi, Jan Neumann, Amit K. Roy-
Chowdhury, Learning Temporal Regularity in Video Sequences (2016),
arXiv:1604.04574.

UCSD Anomaly Detection Dataset. UCSD.edu. Accessed September 19,
2020.

http://www.svcl.ucsd.edu/projects/anomaly/dataset.htm.

APPENDIX A

The values in the Threshold vs Accuracy plot were calcu-
lated using the following algorithm:

for Threshold < 0.85 to 0.95 do
for each Reconstruction Score vector do
If the vector contains a value below the T hreshold,
classify that vector as Anomalous
end for
Calculate the Following Values:
Test Set Accuracy
Train Set Accuracy
Combined Accuracy
end for

Number of Predicted Anomalies (i.e. True Positives)

Test Set Accuracy = Total Size of Test Dataset

: __ (Total Size of Train Dataset - Number of Predicted Anomalies (i.e. False Positives))
Train Set Accuracy - Total Size of Train Dataset

(Test Set Accuracy + Train Set Accuracy)
2

Combined Accuracy =

APPENDIX B
The Python packages used in this project are:
o Keras: For the Convolutional LSTM Autoencoder. Keras
uses Tensorflow as a backend.
« Matplotlib Pyplot: for generating and saving plots
o Numpy: For array and matrix manipulation
o XGBoost: For Supervised Classification Model
« Pickle: For saving and reading in data from hard drive

