
CP8318/CPS803
Lecture 1

Instructor: Nariman Farsad

* Some of the slides in this deck are adopted from Stanford Machine Learning course. 



Why Machine Learning is Important?

“AI is the new electricity!”

AI versus Machine Learning
• Definition of AI is vague, and many agree that it changes with time 
• Machine learning has a clear definition as we will see and is the most important part of AI (at least currently)

Andrew Ng

Electricity transformed many industries: 
transportation, manufacturing, healthcare, 
communications and more

AI will also bring about a big transformation  
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Google Trends

The World

Canada
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Jobs in Machine Learning and AI

Source: https://hai.stanford.edu/sites/default/files/ai_index_2019_report.pdf 4

2.5x more jobs 
Compared to 2016

https://hai.stanford.edu/sites/default/files/ai_index_2019_report.pdf


Research in Machine Learning and AI

Source: https://hai.stanford.edu/sites/default/files/ai_index_2019_report.pdf 5

https://hai.stanford.edu/sites/default/files/ai_index_2019_report.pdf


Poll: Why are you taking this course?
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A. To learn to apply machine learning to different problems.

B. To become an expert in machine learning or do research in this field.

C. I was just curious what is the big deal with machine learning.
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Poll: How was the video/audio quality so far?
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A. Good.

B. Not good, but I can follow all the time.

C. Not great, but I can follow for majority of time.

D. Not good, I can’t see or hear most of the time.

E. I don’t see or hear anything!



1. Administrative
• Please read the course outline in D2L carefully
• Course website: http://narimanfarsad.com/cps803/index.html

2. Course overview and introduction to ML

Today’s Agenda
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http://narimanfarsad.com/cps803/index.html


Teaching Staff 
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Pre-requisite
• Linear algebra (MTH 108)

• matrix multiplication, eigenvector

• Multivariable Calculus (MTH 207) 

• Partial derivative, gradients, Jacobian Matrix 

• Probability (Unwritten pre-requisite)

• distribution, random variable, expectation, conditional probability, variance, density

• Basic programming (in Python)

• We will review these during first 3 weeks

• Good Resource: http://narimanfarsad.com/cps803/background.html

This is a mathematically intense course.
But that’s why it’s exciting and rewarding!                                          11

http://narimanfarsad.com/cps803/background.html


Differences From Previous Years

• We will be using course notes of Andrew Ng at Stanford 

• Everything will be online --- lectures, office hours, discussions 
between students
• We strongly encourage you to study with other students 
• Technology: D2L discussion boards, Zoom, Slack, Discord, WhatsApp … 

• Enrollments increased by ~1.5x compared to last year 
• About 180 students in class
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Course Evaluation
• Three assignment each 15% (total 45%)
• have theoretical (math) and practical (programming) questions
• Are very intensive, start as soon as they are released, or you can’t finish them
• It is fine to discuss the problems with your classmates, but must write your own solutions
• CP8318 students get extra questions for each assignment

• Final Project (5% for proposal and 50% for final submission)
• CPS803 will work in groups of 4 (randomly assigned)

• Each group is assigned a TA, who will be their mentor for the projects throughout the semester
• CP8318 can work individually or in groups of up to 4

• The instructor will mentor for the projects throughout the semester
• Final submission evaluation based on TA feedbacks, groupmates feedbacks, code, report, 

video 13



Final Project
• Since this is most of your grade, the project you do must be “significant”
• See this page for more details: http://narimanfarsad.com/cps803/project.html

• Some potential topic areas:

• Athletics & Sensing Devices
• Audio & Music
• Computer Vision
• Finance & Commerce
• General Machine Learning

• Life Sciences
• Natural Language
• Physical Sciences
• Theory 
• Reinforcement Learning
• Covid-19
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http://narimanfarsad.com/cps803/project.html


Online Lecture Structures 
• Three hours is too long for lectures on machine learning (even if in person)

• Every week 2PM – 4PM lectures over zoom (synchronous lectures)
• Lectures will be recorded and released by end of the Saturday after the Friday lecture  

• Every week from 4PM – 5PM breakout rooms for work on final project

• Every week there will be more lectures and/or video materials released for 
learning (asynchronous lectures)
• Will be released at the same time as recorded video of synchronous lectures
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The Last Lecture
• For the last lecture in we plan to have guest lecture(s) from industry.

• I will announce who are the speaker(s) by the end of October.
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Introduction to Machine Learning
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Definition of Machine Learning

Arthur Samuel (1959): Machine Learning is the 
field of study that gives the computer the ability 
to learn without being explicitly programmed. 

Photos from Wikipedia
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Definition of Machine Learning
Tom Mitchell (1998): a computer program is 
said to learn from experience E with respect 
to some class of tasks T and performance 
measure P, if its performance at tasks in T, as 
measured by P, improves with experience E.

Experience (data): games played by the 
program (with itself)
Performance measure: winning rate

Image from Tom Mitchell’s homepage
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Taxonomy of Machine Learning 
(Different Learning Approaches)  

Supervised
Learning

Unsupervised
Learning

Reinforcement 
Learning
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Taxonomy of Machine Learning 
(Tools and Methods Overlap)  

Supervised
Learning

Unsupervised
Learning

Reinforcement 
Learning
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Supervised Learning
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Housing Price Prediction

𝑥 = 800
𝑦 = ?

15th sample 
(𝑥 !" , 𝑦 !" )

• Given: a dataset that contains 𝑛 samples
𝑥 ! , 𝑦 ! , … (𝑥 " , 𝑦 " )

• Task: if a residence has 𝑥 square feet, predict its price?
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• Lecture 2&3: fitting linear/qaudratic functions to the dataset 
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• Suppose we also know the lot size 
• Task: find a function that maps 

(size, lot size)    → price

More Features 

features/input
𝐱 ∈ ℝ!

label/output
𝑦 ∈ ℝ

𝑦

𝑥"

𝑥!
• Dataset: 𝐱 ! , 𝑦 ! , … , (𝐱 " , 𝑦 " )

where 𝐱($) = (𝑥!
$ , 𝑥&

$ )
• “Supervision” refers to 𝑦(!), … , 𝑦(")
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High-dimensional Features
• 𝐱 ∈ ℝ# for large 𝑑
• E.g., 

𝐱 =

𝑥!
𝑥$
𝑥%
⋮
⋮
⋮
𝑥#

--- living size
--- lot size
--- # floors
--- condition
--- zip code

⋮

𝑦 --- price

• Lecture 5-6: infinite dimensional features
• Lecture 8-9: select features based on the data 
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Regression vs Classification
• regression: if 𝑦 ∈ ℝ is a continuous variable
• e.g., price prediction

• classification: the label is a discrete variable
• e.g., the task of predicting the types of residence

(size, lot size)    → house or townhouse?

𝑦 = house or 
townhouse?

Lecture 3&4: 
classification
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Supervised Learning in Computer Vision
• Image Classification
• 𝐱 = raw pixels of the image, 𝑦 = the main object

ImageNet Large Scale Visual Recognition Challenge. Russakovsky et al.’2015 28



Supervised Learning in Computer Vision

ImageNet Large Scale Visual Recognition Challenge. Russakovsky et al.’2015

• Object localization and detection
• 𝐱 = raw pixels of the image, 𝐲 = the bounding boxes
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Supervised Learning in Natural Language Processing
• Machine translation

• Note: this course only covers the basic and fundamental
techniques of supervised learning
• This is not enough for solving hard vision or NLP

problems. We have other courses for that CPS870, 
CPS843. 

𝐱 𝐲
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Unsupervised Learning
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Unsupervised Learning

• Dataset contains no labels: 𝐱 ! , … 𝐱 &

• Goal (vaguely-posed): to find interesting structures in the data

supervised unsupervised
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Clustering 
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Clustering 

• Lecture 8: k-mean clustering, mixture of Gaussians
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Clustering Genes

Ge
ne

s

Individuals
Identifying Regulatory Mechanisms using Individual Variation Reveals Key Role for Chromatin 
Modification. [Su-In Lee, Dana Pe'er, Aimee M. Dudley, George M. Church and Daphne Koller. ’06]

Cluster 7Cluster 1

35



Latent Semantic Analysis (LSA)

w
or

ds

Image credit: https://commons.wikimedia.org/wiki/File:Topic_detection_in_a_document-word_matrix.gif

documents

• Lecture 9: principal component analysis (tools used in LSA)
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Word Embeddings

Ø word

France

Paris

Berlin

Germany

Italy

Rome

Paris – France + Italy = Rome

#$%&'#
vector

Ø relation
#$%&'#

direction

models

Word2vec [Mikolov et al’13]
GloVe [Pennington et al’14]

Unlabeled dataset

Represent words by vectors
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Hierarchical Clustering of Words

[Arora-Ge-Liang-M.-Risteski, TACL’17,18] 38



Reinforcement Learning
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Reinforcement Learning
• The algorithm can collect data interactively

Improve the strategy 
based on the 
feedbacks

Data 
collection TrainingTry the strategy and 

collect feedbacks

V Mnih et al. Nature 518, 529-533 (2015) doi:10.1038/nature14236
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Learning to Play

41V Mnih et al. Nature 518, 529-533 (2015) doi:10.1038/nature14236



Stanford Autonomous Helicopter 

• Two controllers

• Can be flown in many ways

• How do we learn to fly?
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Stanford Autonomous Helicopter Using RL 

Source: http://heli.stanford.edu/icml2008/ 43

http://heli.stanford.edu/icml2008/


Like to Learn More About RL?

• Lecture 11 will cover the very basics of RL

• Please take CPS824/CP8319: Reinforcement 
Learning in the Winter 2021 to lean more
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Other Tools/Topics In This Course

• Deep learning basics

• Introduction to learning theory
• Bias variance tradeoff
• Feature selection
• ML advice

• Broader aspects of ML
• Robustness/fairness 
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